
ALB: Adaptive Load Balancing Based on Accurate
Congestion Feedback for Asymmetric Topologies

Qingyu Shi1, Fang Wang1,2, Dan Feng1, and Weibin Xie1

1Wuhan National Laboratory for Optoelectronics, Key Laboratory of
Information Storage System (School of Computer Science and Technology,

Huazhong University of Science and Technology), Ministry of Education of China
2Shenzhen Huazhong University of Science and Technology Research Institute

Corresponding author: wangfang@hust.edu.cn

Abstract—In datacenter networks, multipath exists to facilitate
parallel data transmission. Taking deployment challenges into
account, some optimized alternatives (e.g. CLOVE, Hermes)
to ECMP balance load at the virtual edge or hosts. However
inaccuracies of congestion detection and reaction exist in these
solutions. They either detect congestion through ECN and coarse-
grained RTT measurements or are congestion-oblivious. These
congestion feedbacks are not sufficient enough to indicate the
accurate congestion status under asymmetry. And when rerouting
events occur on multiple paths, ACKs with congestion feedback
of other paths can improperly influence the current sending rate.

Therefore, we explore how to balance load by solving above
inaccuracy problems while ensuring good adaptation to com-
modity switches and existing network protocols. We propose
ALB, an adaptive load-balancing mechanism based on accurate
congestion feedback running at end hosts, which is resilient to
asymmetry. ALB leverage a latency-based congestion detection
to precisely route flowlets to lighter load paths, and an ACK
correction method to avoid inaccurate flow rate adjustment. In
large-scale simulations ALB achieves up to 7% and 40% better
flow completion time (FCT) than CONGA and CLOVE-ECN
under asymmetry.

Index Terms—datacenter networks, load balancing, congestion
feedback

I. INTRODUCTION

Datacenter networks typically adopt multi-rooted topologies
such as fat-tree and leaf-spine, to provide high bisection
bandwidth. The multipath existing in these topologies provides
several alternative routing paths between any two end-hosts
which are connected by different switches. Balancing load
in multiple paths to fully utilize the network resource can
improve throughput and reduce latency for datacenter appli-
cations. Equal Cost Multiple Path (ECMP) forwarding [1], as
the the standard strategy used today for load balancing in dat-
acenters, randomly assigns flows to different paths according
to a hash function using certain tuples from the packet header.
But ECMP performs poorly because of hash collisions and the
lack of adaptability to asymmetric topologies.

Despite causing traffic conflicts, ECMP is widely imple-
mented because it is readily deployed with standard unmodi-
fied TCP/IP stacks and commodity datacenter switches. And
under a symmetric network topology, if all flows are small,
ECMP can provide near optimal transmission performance

[2]. However, (1) on the one hand the datacenter presents a
network environment with mixed traffics [3], where applica-
tions which are sensitive to bandwidth (e.g. MapReduce) and
sensitive to flow completion time (e.g. Memcached) exist. (2)
On the other hand, network asymmetry is common for modern
datacenters in practice [4], where different paths between
one or more source/destination pairs have different amounts
of available bandwidth. Because the datacenter evolvement
adding racks and switches can cause coexistence of heteroge-
nous switches and cutting links can also create asymmetries
[5] [6]. We will analyze below that asymmetry exacerbates
the inaccuracy of congestion feedback. ECMP not accounting
for either flow size or current network utilization overwhelms
switch buffers and degrades link bandwidth utilization.

Prior solutions have made a great deal of effort to improve
performance under the situation described above. Taking de-
ployment challenges into account, some optimized alternatives
(e.g. CLOVE-ECN [7], Hermes [4]) to ECMP balance load
at the virtual edge or hosts to handle asymmetry and keep
practical. However, they depend too much on the rough
congestion feedback (e.g. ECN and coarse-grained RTT mea-
surements) to balance load, and so performance can be de-
graded. CLOVE-ECN learns congestion along network paths
using ECN signals and uses a weighted round-robin (WRR)
algorithm to dynamically route flowlets on multiple paths.
Hermes also exploits ECN signals and coarse-grained RTT
measurements (e.g. introducing end host network stack delay)
to decide the flow path at the host side. Inaccurate ECN
signals and coarse-grained RTT measurements may degrade
the performance gains in asymmetric topologies though they
schedule flows using excellent algorithms. The ECN-based
congestion detection cannot accurately characterize the degree
of congestion among multiple paths in an asymmetric network
due to its inherent oversimplified feedback. The coarse-grained
RTT measurement can be believable if and only if a small
RTT is discovered. Furthermore, ECN is a passive and delayed
mechanism for informing congestion level in multiple paths,
and so it can hardly achieve timely load balancing. Therefore,
current load-balancing solutions cannot accurately sensing net-
work congestion under asymmetry without custom switches.

Actually the end-to-end latency effectively reflects whether

978-1-5386-2542-2/18/$31.00 ©2018 IEEE

the path has been congested. Fortunately with the rapid
growth of cloud computing and network functions virtualiza-
tion (NFV), the advances in widely used NIC hardware and
efficient packet IO frameworks (e.g. DPDK [8]) have made the
measurement of end-to-end latency possible with microsecond
accuracy. [9] shows that latency-based implicit feedback is ac-
curate enough to reveal path congestion. DPDK now supports
all major CPU architectures and NICs from multiple vendors
(e.g. Intel, Emulex, Mellanox, and Cisco). [10] reveals that a
tuned DPDK solution such as TRex [11] only introduces 5µs
to 10µs overhead. Several latency-based congestion control
protocols for datacenter networks have emerged (e.g. Timely
[12], DX [9]). With the help of DPDK, the end-to-end latency
can be measured with sufficient precision.

Moreover, current load-balancing solutions also create new
inaccurate congestion feedbacks in transport protocols under
asymmetry. And this phenomenon is called congestion mis-
match first unveiled in [4]. Due to that transport protocols do
not perceive multipathing to adjust the flow rate, rerouting
events can cause a mismatch between the sending rate and the
state of the new path. This problem hinders the utilization
of link bandwidth especially under asymmetric topologies.
When the problem occurs, the ACK with no ECE mark of the
other path may improperly increase the sending rate (window),
while the one with an ECE mark will mistakenly decrease the
sending rate. Therefore, current ECN-based congestion control
mechanism cannot avoid the chaos of congestion feedbacks
and can mistakenly adjust flow rate (we called it inaccurate
rate adjustment problem in this paper).

According to above observation, we find that inaccurate
congestion feedback under asymmetry exists in current load-
balancing schemes and this motivates us to solve the problem
to improve performance. Finally we present ALB, which
achieves accurate congestion feedback at end hosts with com-
modity switches and provides competitive performance with
those schemes requiring custom switches (e.g. LetFlow [13],
CONGA [14]).

We make the following contributions in this paper:
• We analyze that the inaccuracy of congestion feedback

can degrade performance under asymmetry in load bal-
ancing above.

• We present ALB, an adaptive load-balancing mecha-
nism based on accurate congestion feedback running at
end hosts, which is resilient to asymmetry and readily-
deloyable with commodity switches in large-scale data-
centers. Compared with Hermes, ALB requires no com-
plicated parameter settings and provides competitive per-
formance.

• In large-scale simulations we show that ALB achieves up
to 7% and 40% better flow completion time than CONGA
and CLOVE-ECN under asymmetry.

II. DESIGN

A. Overview

We present ALB’s framework in Fig. 1. ALB contains two
modules, which are MDCTCP and ALB core. We design

MDCTCP by slightly modifying DCTCP [15]. MDCTCP is
an ECN-based network protocol. And other three functions,
namely source routing, latency-based congestion detection and
accurate flowlet switching, work in the ALB core.

Fig. 1. The design of ALB

The source routing is used for path discovery. Then, the
latency-based congestion detection serves to provide the accu-
rate queuing delay for each path. So the source vSwitch can
timely obtain the end-to-end latency and RTTs for every flow.
Moreover, ALB divides each flow into flowlets to balance load
with the latency-based congestion detection in a fine-grained
way. Finally, the ACK correction function correcting the
inaccurate rate adjustment needs the cooperation of MDCTCP
and ALB core.

B. The Detailed Design of ALB

a) Source Routing: In order to route flows in all paths
on the source side, ALB uses the traceroute mechanism in
source vSwitch similar to CLOVE. The commodity datacenter
switches inherently implement ECMP and the overlay network
generally exists. By sending probes with varying source ports
in static ECMP-based datacenter networks, ALB routing mod-
ule can find a subset of source ports that lead to distinct paths.
And the routing module can modify the source port of tunnel
encapsulation (e.g. using Stateless Transport Tunneling (STT)
protocol) to control transmission path of every flow.

b) Latency-based Congestion Detection: ALB measures
the RTT and one-way delay for every flow under the clock
without synchronization. Compared with ECN-based conges-
tion detection, our algorithm can characterize the degree of
path congestion more accurately through the end-to-end queu-
ing delay detection, and feedback congestion metrics more
quickly by leveraging other normal connections.

ALB timestamps packets in the option fields of TCP header
at the DPDK-based device driver so as to calculate the RTT
and one-way delay. For example in Fig. 2 we record NIC
time t1, t2, t3 and t4 into the option fields of TCP header.
We calculate the one-way delay by subtracting the baseline
one-way delay, which is measured by picking the minimum
among enough samples, from the current one-way delay under
the clock without synchronization. We update the baseline
delay in every few RTTs to avoid clock drifts [9] problems.
In addition to calculating the one-way delay and measuring
the RTT, ALB uses a feedback loop between the source and
destination vSwitch to populate remote metrics in the Latency-
To-Leaf Table at each vSwitch. The feedback metric includes

Fig. 2. The framework of latency-based congestion detection

two path IDs and a one-way delay of the feedback path, which
requiring only no more than 6 bytes can be encoded in the
fields of tunnel encapsulation Stateless Transport Tunneling
(STT) context. The first 2 bytes are for two path IDs and
remaining 4 bytes are used for storing the feedback one-way
delay. The STT context containing 64 bits provides sufficient
fields for our design. Referring to Fig. 2 for an example, we
describe the process as the following five steps:

1) ALB selects the transmission path with the smallest
one-way delay in Latency-To-Leaf table for every new
flowlet, and write the path ID into the fields of tunnel
encapsulation. The source server writes NIC time into
t1 right before the TX.

2) Right after the RX, the destination server records NIC
time into t2. The destination vSwitch stores a mapping
from the expected ACK of the packet to t1, t2 and the
path ID in the tunnel encapsulation when it forwards the
packet to the destination host. The destination vSwitch
updates the one-way delay (t2 − t1 − baseline) to
Latency-From-Leaf table.

3) When the returned ACK goes through the destination
vSwitch, t1 and t2 are filled into the ACK header
according to the timestamp mapping, while the path
ID is piggybacked in the tunnel encapsulation. And
right before the TX we fill t3 with the NIC time in
destination server. One metric from Latency-From-Leaf
table is inserted in the tunnel encapsulation.

4) When the ACK arrives at the source server, right after
the RX t4 is filled into the ACK header.

5) Finally, when the ACK goes through the source vSwitch,
we can calculate the new RTT value RTTnew as t4−t1−
(t3 − t2) and update this value only when RTTnew ≤
RTTold (RTTold represents the old RTT value). Then
we update one metric in Latency-To-Leaf table with the
feedback metric in tunnel encapsulation.

It is important to emphasize that we describe a simpli-
fied process of exchanging latency metrics above. Only the
RTT measurement needs to wait the ACK packet to convey

timestamps, and actually every packet simultaneously carries
both timestamps to calculate forwarding one-way delay and
a feedback metric. We use a round robin fashion to convey
feedback metrics in Latency-From-Leaf table and the metrics
whose values have been updated since last feedback will
be preferentially chosen. Furthermore, it is possible that the
metrics become unused if there is not enough feedback packets
because of delayed ACKs and the lack of other connections to
piggyback them. So we add a UDP-based daemon in vSwitch
to improve the visibility of latency. If the metric in Latency-
From-Leaf table has not been transferred more than β (β is
a tunable parameter in ALB) RTTs, the UDP-based daemon
should send it to destination vSwitchs which are under the
corresponding leaf switch. To balance the bandwidth cost with
performance gain we suggest to set β to 2 after our many
experiments.

Through above steps we maintain the corresponding one-
way delay mapping for each path. But over time the baseline
one-way delay may be influenced by the clock drift between
two hosts. So we update the baseline one-way delay according
to the change of RTTs. Each time the value of RTT in mapping
table is updated, we need to remeasure the baseline one-way
delay to keep it fresh. Finally the latency-based congestion
detection enables ALB to accurately reroute flowlets to the
least congested paths.

c) Accurate Flowlet Switching: Flowlet switching [16]
is a widely-used and fine-grained load-balancing strategy,
which splits a flow into many flowlets to route over multiple
paths without causing much packet reordering. Compared to
previous congestion-aware mechanisms ALB leverages the
latency-based congestion detection to achieve more accurate
flowlet switching while working with commodity switches.
This method is a trade-off between performance improvement
and difficulties in deployment for load balancing. Unlike prior
schemes relying on ECN-based congestion detection, ALB
does not need to rely on ECN feedback. The flowlet switching
in ALB is simple that a new flowlet always selects the least
congested path which has the smallest one-way delay referring
to the Latency-To-Leaf table in source vSwitch (Fig. 2).

d) ACK Correction: ACK correction needs to pass the
signal of state mismatch to MDCTCP. When one returned
ACK reaches the source vSwitch, ALB calculates the flowlet
ID of this flow according to the fields of protocol header
and get the mapped path ID in mapping table. Another path
ID identifying which path the congestion feedback belongs
to is piggybacked by the ACK (referring to Fig. 2). Then
ALB compares whether the mapped path ID and the one
piggybacked in tunnel encapsulation of this ACK are equal. If
these two path IDs are not equal, ALB modifies a reserved
bit in the TCP header to 1, otherwise sets the bit to 0.
Therefore, the reserved bit can indicate whether the congestion
feedback belongs to the current state. ALB passes this signal
to MDCTCP through the reserved bit. We call it Path Change
Notification and PCN for short.

MDCTCP is a congestion control protocol that is slightly
modified based on DCTCP. In MDCTCP the PCN flag in

0.2 0.3 0.4 0.5 0.6 0.7 0.8

1.00

1.05

1.10

1.15

1.20

F
C
T
(N
o
rm
.
to
A
L
B
)

Load (%)

CLOVE-ECN ACK-Correction

Latency-Only ALB

(a) Overall avg FCT

0.2 0.3 0.4 0.5 0.6 0.7 0.8

1.00

1.05

1.10

1.15

1.20

1.25

1.30

F
C
T
(N
o
rm
.
to
A
L
B
)

Load (%)

CLOVE-ECN ACK-Correction

Latency-Only ALB

(b) Large flow (>10MB) avg

0.2 0.3 0.4 0.5 0.6 0.7 0.8

1.00

1.05

1.10

1.15

1.20

1.25

1.30

F
C
T
(N
o
rm
.
to
A
L
B
)

Load (%)

CLOVE-ECN ACK-Correction

Latency-Only ALB

(c) Small flow (<100KB) avg

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

F
C
T
(N
o
rm
.
to
A
L
B
)

Load (%)

CLOVE-ECN ACK-Correction

Latency-Only ALB

(d) Small flow 99th percentile

Fig. 3. FCT of different methods (normalized to ALB).

TCP header joins the management of sending rate. The only
difference between MDCTCP and DCTCP is in how the sender
reacts to receiving an ACK. Because zeroing the PCN flag
means that this is a matched feedback, MDCTCP only adjusts
the congestion window and threshold when the PCN flag
is 0, otherwise we maintain these values unchanged. Other
features of DCTCP are left unchanged. While DCTCP always
uses an estimate α to resize it’s window size, MDCTCP adds
a conditional statement:

cwnd =

{
cwnd× (1− α/2), if PCN is 0

cwnd, if PCN is 1
(1)

Thus, we avoid the influence of congestion feedback that
does not belong to the current path. In this way we avoid the
inaccurate rate adjustment. But our algorithm can reduce the
total amount of packet statistics at the sender, because those
ACKs whose PCN flag marked with 1 will be removed from
the packet statistics. When the load is not heavy, there are not
many flow rerouting events so the performance of MDCTCP
may get close to DCTCP. When the load becomes heavy, the
value α becomes high (α = 1) so as to the congestion window
can even be mistakenly cut in half because of inaccurate rate
adjustment, and more flow rerouting events occur in this situa-
tion. Therefore MDCTCP significantly improves performance
at heavy load. The evaluation result in Fig. 3 also validates
our analysis, in which ACK-Correction works better at high
load.

III. EVALUATION

A. Functionality Verification

We run a trace-driven simulation to expose the performance
degradation due to inaccuracies, which is based on the web-
search workload in a 4×4 leaf-spine topology with 10Gbps
links and 32 servers in NS3. We make the topology asymmet-
ric through reducing the capacity from 10Gbps to 2Gbps for
20% of randomly selected leaf-to-spine links.

In ALB, we use ACK correction to avoid inaccurate rate
adjustment, while using latency-based congestion detection to
improve accuracy of congestion detection on multiple paths.
We show the performance improvement due to fixing these
inaccuracies in Fig. 3. In Fig. 3 Latency-Only indicates the
solution where only latency-based congestion detection is
implemented, while ACK-Correction means that the effect of
inaccurate ACK feedbacks is ruled out from CLOVE-ECN.

We use flow completion time (FCT) as the performance metric
(Note that we normalize the flow completion time to ALB to
better visualize the results). ACK-Correction works better at
the heavy load (at 80% loads), while Latency-Only always
performs better than CLOVE-ECN. Compared to CLOVE-
ECN, Latency-Only can always find a less congested path
for a new flowlet more accurately. When the load gets more
aggravated, more paths become congested, therefore the per-
formance improvement of Latency-Only decreases. Besides,
because more flowlets are created at high loads, more path
switching occurs. So at high loads ACK-Correction solves
more events of inaccurate rate adjustment so as to obtain more
performance gains. By combining these two methods, ALB
achieves up to 14% better overall average FCT and 37% better
99th-percentile FCT for small flows than CLOVE-ECN. The
combination of latency-based congestion detection and ACK
correction can provide significant performance improvements.

B. Performance Comparison

We evaluate ALB and compare its performance with other
representative solutions in large-scale simulations.

Workloads: We use two widely-used realistic workloads
observed from deployed datacenters: web-search [15] and
data-mining [17].

Metrics: Similar to previous work, we use flow completion
time (FCT) as the primary performance metric. We normalize
the FCT to ALB to better visualize the results.

Topology: We build a 8×8 leaf-spine topology with 10Gbps
links and 128 servers with NS3. Therefore we simulate a
2:1 oversubscription at the leaf level to meet the typical
deployment of current datacenters [14]. To compare ALB with
above schemes under asymmetry, we reduce the link capacity
from 10Gbps to 2Gbps for 20% of randomly selected leaf-to-
spine links.

Methodology: Besides ECMP we compare ALB with four
schemes using DCTCP as the default transport protocol: an
idealized variant of Presto with a reordering buffer, LetFlow,
the state-of-the-art scheme CONGA and CLOVE-ECN.

Note: We do not compare all previous solutions. We first
should choose schemes using the ECN-based congestion con-
trol protocol. Then because Hermes’s performance is close to
CONGA when there is no switch failure and Hermes intro-
duces a large number of parameter settings that make it hard

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
F
C
T
(N
o
rm
.
to
A
L
B
)

Load (%)

CLOVE-ECN CONGA

Presto LetFlow

ALB

(a) Overall avg FCT

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

F
C
T
(N
o
rm
.
to
A
L
B
)

Load (%)

CLOVE-ECN CONGA

Presto LetFlow

ALB

(b) Large flow (>10MB) avg

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

F
C
T
(N
o
rm
.
to
A
L
B
)

Load (%)

CLOVE-ECN CONGA

Presto LetFlow

ALB

(c) Small flow (<100KB) avg

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

F
C
T
(N
o
rm
.
to
A
L
B
)

Load (%)

CLOVE-ECN CONGA

Presto LetFlow

ALB

(d) Small flow 99th percentile

Fig. 4. FCT for the web-search workload in the asymmetric topology (normalized to ALB).

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

F
C
T
(N
o
rm
.
to
A
L
B
)

Load (%)

CLOVE-ECN CONGA

Presto LetFlow

ALB

(a) Overall avg FCT

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

F
C
T
(N
o
rm
.
to
A
L
B
)

Load (%)

CLOVE-ECN CONGA

Presto LetFlow

ALB

(b) Large flow (>10MB) avg

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

F
C
T
(N
o
rm
.
to
A
L
B
)

Load (%)

CLOVE-ECN CONGA

Presto LetFlow

ALB

(c) Small flow (<100KB) avg

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

F
C
T
(N
o
rm
.
to
A
L
B
)

Load (%)

CLOVE-ECN CONGA

Presto LetFlow

ALB

(d) Overall 99th percentile

Fig. 5. FCT for the data-mining workload in the asymmetric topology (normalized to ALB).

to set up to achieve optimal performance for us, we have not
simulated it. Additionally we do not compare against MPTCP
because of performance instability and worse performance
gains compared with CONGA in many scenarios. We try
several different flowlet timeout values in CLOVE-ECN and
CONGA, and adopt the most appropriate one (250µs) in our
simulations for all flowlet-based solutions.

Under the web-search workload: As shown in Fig. 4,
CONGA performs the best performance in most cases. ALB
and LetFlow achieve similar performance. Because the web-
search workload is more bursty and creates a large number of
flowlets, in-network schemes (e.g. CONGA and LetFlow) can
balance load more faster than other solutions deployed at end-
hosts. But at 0.2-0.4 load, ALB performs 8-14% better than
LetFlow. This is because LetFlow is oblivious to congestion
and the load is not heavy. ALB achieves accurate congestion
detection so as to obtain better performance than LetFlow
at light loads. When load gets heavy, LetFlow can quickly
converge even without good visibility to congestion. Compared
to CLOVE-ECN, ALB always improves the overall average
FCT by 21-40%. This is because ALB based on accurate
congestion feedback can reroute new flowlets more accurately
and avoid the inaccurate rate adjustment at end-hosts. In [4],
Hermes only achieves similar performance with CLOVE-ECN
under the web-search workload. Moreover, as shown in Fig.
4(c) and Fig. 4(d), the average and the 99th percentile FCTs for
small flows grow dramatically for all of schemes except ALB.
This is because under high loads more flowlets are created

by small flows and they are seriously affected by congestion
mismatch. Because of accurate rate adjustment, ALB can
alleviate the congestion mismatch problem. In comparison, at
0.8 load ALB improves the average and the 99th percentile
FCTs for small flows by 52-201% and 74-129% respectively.

Under the data-mining workload: As shown in Fig. 5,
ALB achieves 2-7% better performance than CONGA for
the overall average FCT. Note that the data-mining workload
contains more large flows and has a much bigger inter-flow
arrival time. ALB can balance load accurately even though
there are not too much bursty arrivals of new flows. And
CONGA implemented in switches cannot handle the inac-
curate rate adjustment problem. Therefore ALB can outper-
form CONGA slightly. Moreover, ALB achieves 3-13% and
9-14% better performance than LetFlow and CLOVE-ECN
respectively. This is because the data-mining workload is less
bursty and so the visibility of network congestion becomes
especially important to balance load effectively. Based on
accurate congestion feedback ALB achieves better visibility
of network congestion than LetFlow and CLOVE-ECN.

For Presto, we take into account the network asymmetry
by using static weights (based on the topology) to make load-
balancing decisions [13]. However, Presto does not achieve
comparable performance to ALB. This is because congestion
mismatch problem. When load gets heavy under asymmetry,
the congestion window in Presto is constrained by the most
congested path and the flow rate is adjusted in a chaotic way.
This causes high FCTs under asymmetry.

IV. RELATED WORK

Centralized Mechanisms: The centralized scheduler used
in centralized mechanisms (e.g. Hedera [18], MicroTE [19]
and FastPass [20]) monitors global network state and schedules
flows evenly in multiple paths. But they have long scheduling
interval, which is not adaptive to the traffic volatility of
datacenter networks. Therefore the latency-sensitive flows do
not fit into these centralized mechanisms.

In-Network Distributed Mechanisms: Some in-network
solutions based on local state (e.g. Flare [16], LocalFlow
[21], Drill [22] and LetFlow [13]) route flowlets according
to local link utilization. Due to the lack of global congestion
detection, they perform poor with dynamic traffic changes
and varying asymmetry. And some other mechanisms (e.g.
CONGA [14], HULA [23] and CLOVE-INT [7]) which em-
ploy custom switches to balance load with global visibility
of link state. However, the requirement of custom switches
creates difficulties in deployment and scalability. Besides, the
rerouting events at in-network devices cannot cooperate with
the congestion control protocol at the sender, which leads
to inaccurate rate adjustment. ALB can sense the inaccuracy
problem at source vSwitch to inform the sender.

Host-based Mechanisms: MPTCP [24] creates more bursti-
ness and performs poorly under incast [14]. Flowbender [25]
reroutes flows blindly when congestion is detected based
on ECN signals at end hosts. Presto [2] routes flowcells to
balance load at network edge. CLOVE-ECN [7] leverages per-
flowlet weighted round robin at end hosts to route flowlets.
And these path weights are calculated according to ECN
signals residing in ACKs. Hermes [4] exploits ECN signals
and coarse-grained RTT measurements to sense congestion on
multiple paths, while ALB use a more accurate congestion
detection. ALB requires no complicated parameter settings and
provides competitive performance (e.g. ALB achieves up to
7% FCT than CONGA under asymmetry).

V. CONCLUSION

We propose ALB, an adaptive load-balancing mechanism
based on accurate congestion feedback running at end hosts,
which is resilient to asymmetry. ALB leverage a latency-based
congestion detection to precisely route flowlets to lighter load
paths, and an ACK correction method to avoid inaccurate flow
rate adjustment. We evaluate ALB through large-scale simu-
lations. Our results show that compared to schemes requiring
custom swithes or complicated parameter settings, ALB can
provide competitive performance.

ACKNOWLEDGMENT

This work is supported in part by NSFC No.61772216, Na-
tional Defense Preliminary Research Project (31511010202),
the National High Technology Research and Develop-
ment Program (863 Program) of China under Grant
No.2013AA013203; Hubei Province Technical Innovation
Special Project (2017AAA129), Wuhan Application Basic
Research Project (2017010201010103), Project of Shenzhen

Technology Scheme (JCYJ20170307172248636), Fundamen-
tal Research Funds for the Central Universities. This work is
also supported by NSFC No.61502190 and CERNET Innova-
tion Project NGII20170120.

REFERENCES

[1] C. Hopps, “Analysis of an equal-cost multi-path algorithm,” RFC 2992,
2000.

[2] K. He et al., “Presto: Edge-based load balancing for fast datacenter
networks,” ACM SIGCOMM Computer Communication Review, vol. 45,
no. 4, pp. 465–478, 2015.

[3] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. ACM IMC, 2010.

[4] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, “Resilient
datacenter load balancing in the wild,” in Proc. ACM SIGCOMM, 2017.

[5] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures
in data centers: Measurement, analysis, and implications,” ACM SIG-
COMM Computer Communication Review, vol. 41, no. 4, pp. 350–361,
2011.

[6] C. Guo et al., “Pingmesh: A large-scale system for data center network
latency measurement and analysis,” in Proc. ACM SIGCOMM, 2015.

[7] N. Katta et al., “Clove: Congestion-aware load balancing at the virtual
edge,” in Proc. ACM CoNEXT, 2017.

[8] “Intel dpdk. data plane development kit.” [Online]. Available:
http://dpdk.org/.

[9] C. Lee, C. Park, K. Jang, S. Moon, and D. Han, “Dx: Latency-
based congestion control for datacenters,” IEEE/ACM Transactions on
Networking (TON), vol. 25, no. 1, pp. 335–348, 2017.

[10] M. Primorac, E. Bugnion, and K. Argyraki, “How to measure the killer
microsecond,” in Proc. ACM SIGCOMM Workshop on KBNets, 2017.

[11] “Cisco systems. TRex: Cisco’s realistic traffic generator.” [Online].
Available: https://trex-tgn.cisco.com.

[12] R. Mittal et al., “Timely: Rtt-based congestion control for the datacen-
ter,” ACM SIGCOMM Computer Communication Review, vol. 45, no. 4,
pp. 537–550, 2015.

[13] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall, “Let it flow:
Resilient asymmetric load balancing with flowlet switching.,” in Proc.
USENIX NSDI, 2017.

[14] M. Alizadeh et al., “CONGA: Distributed congestion-aware load bal-
ancing for datacenters,” in Proc. ACM SIGCOMM, 2014.

[15] M. Alizadeh et al., “Data center tcp (dctcp),” in Proc. ACM SIGCOMM,
2010.

[16] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load
balancing without packet reordering,” ACM SIGCOMM Computer Com-
munication Review, vol. 37, no. 2, pp. 51–62, 2007.

[17] A. Greenberg et al., “Vl2: a scalable and flexible data center network,”
in Proc. ACM SIGCOMM, 2009.

[18] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
USENIX NSDI, 2010.

[19] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained
traffic engineering for data centers,” in Proc. ACM CoNEXT, 2011.

[20] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A centralized ”zero-queue” datacenter network,” in Proc.
ACM SIGCOMM, 2014.

[21] S. Sen, D. Shue, S. Ihm, and M. J. Freedman, “Scalable, optimal flow
routing in datacenters via local link balancing,” in Proc. ACM CoNEXT,
2013.

[22] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,
“Drill: Micro load balancing for low-latency data center networks,” in
Proc. ACM SIGCOMM, 2017.

[23] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “HULA:
Scalable load balancing using programmable data planes,” in Proc. ACM
SOSR, 2016.

[24] C. Raiciu et al., “Improving datacenter performance and robustness with
multipath TCP,” in Proc. ACM SIGCOMM, 2011.

[25] A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene, “Flowbender: Flow-
level adaptive routing for improved latency and throughput in datacenter
networks,” in Proc. ACM CoNEXT, 2014.

