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a b s t r a c t 

Datacenter load balancing schemes exist to facilitate parallel data transmission with multiple paths un- 

der various uncertainties such as traffic dynamics and topology asymmetries. Taking deployment chal- 

lenges into account, several optimized schemes (e.g. CLOVE, Hermes) to ECMP balance load at end hosts. 

However, inaccurate congestion feedback exists in these solutions. They either detect congestion through 

Explicit Congestion Notification (ECN) and coarse-grained Round-Trip Time (RTT) measurements or are 

congestion-oblivious. These congestion feedbacks are not sufficient enough to indicate the accurate con- 

gestion status under asymmetry. And when rerouting events occur, outdated ACKs carrying congestion 

feedback of other paths can improperly influence the current sending rate. After our observations and 

analyses, these inaccurate congestion feedback can degrade performance. 

Therefore, we explore how to address above problems while ensuring good adaptation to existing 

switch hardware and network protocol stack. We propose ALB, an adaptive load balancing mechanism 

based on accurate congestion feedback running at end hosts, which is resilient to asymmetry. ALB lever- 

ages a latency-based congestion detection to precisely reroute new flowlets to the paths with lighter load, 

and an ACK correction method to avoid inaccurate flow rate adjustment. In large-scale simulations, ALB 

achieves up to 13% and 48% better average flow completion time (FCT) than CONGA and CLOVE-ECN un- 

der asymmetry, respectively. And compared with other schemes ALB improves the average and the 99th 

percentile FCTs for small flows under high bursty traffic by 43–174% and 75–129%. Under the situation 

of dynamic network changes, ALB also provides competitive overall performance and maintains stable 

performance for small flows. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Datacenter networks typically adopt multi-rooted topologies,

uch as fat tree and leaf spine, to provide high bisection band-

idth. The multipath existing in these topologies provides several

lternative routing paths between any two end hosts which are

onnected by different switches. Balancing load in multiple paths

o fully utilize the network resource can improve throughput and

educe latency for datacenter applications. But various uncertain-

ies, such as traffic dynamics and topology asymmetries, pose

reat challenges for designing efficient load balancing schemes.

roduction datacenters present a network environment with

ynamic traffics [1] , where applications that are sensitive to band-

idth (e.g. MapReduce) and sensitive to flow completion time
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e.g. Memcached) exist. And asymmetry is common in datacenter

etworks [2] because of adding racks, heterogenous network

evices, cutting links and switch malfunctions [3,4] . Efficient load

alancing mechanisms usually adapt to above uncertainties, which

hould accurately detect path conditions and distribute traffic

mong multipaths based on path conditions. 

However, Equal Cost Multiple Path (ECMP) forwarding [5] , as

he standard strategy used today for load balancing in datacenter

etworks, performs poorly. It randomly assigns flows to different

aths permanently according to a hash function using certain tu-

les from the packet header. Because it accounts for neither path

onditions nor flow size, it can waste over 50% of the bisection

andwidth [6] . 

Therefore, prior solutions (e.g. CONGA [7] , CLOVE-ECN [8] ,

lowBender [9] , Hermes [2] ) have made a great deal of effort

o improve performance, but they still have some drawbacks.

ome distributed load balancing schemes (e.g. CONGA, HULA [10] ,

etFlow [11] ) residing in custom switches are hard to deploy in

https://doi.org/10.1016/j.comnet.2019.04.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
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general datacenter networks, although they achieve significant im-

provement for throughput and latency. Centralized solutions (e.g.

Hedera [6] ) globally schedule large flows by collecting network

information in a controller. But they have long scheduling inter-

vals, which are not adaptive to the traffic volatility of datacenter

networks and harmful for small flows. 

The last category of solutions (e.g. CLOVE-ECN, Hermes) are de-

ployed at network edges (e.g. hypervisor) or end hosts to keep

practical. Some of them are designed to be congestion-aware. How-

ever, they depend too much on the rough congestion feedback

(e.g. ECN and coarse-grained RTT measurements) to sense conges-

tion. CLOVE-ECN learns congestion along network paths from ECN

signals and uses a weighted round-robin (WRR) algorithm to dy-

namically route flowlets [12] on multiple paths. Hermes also ex-

ploits ECN signals and coarse-grained RTT measurements to decide

the flow path at the host side. RTT measurements lump latencies

in both directions along the network path. In order to use RTTs

to capture congestion of the forward path, prior mechanisms (e.g.

Hermes, TIMELY [13] ) classify pure ACK packets in the reverse path

into the higher priority queue. Inaccurate ECN signals and coarse-

grained RTT measurements can degrade the performance gains in

asymmetric topologies though they schedule flows using excellent

algorithms. The ECN-based congestion detection cannot accurately

characterize the degree of congestion among multiple paths in an

asymmetric network due to its inherent oversimplified feedback.

The coarse-grained RTT measurement introduces end host network

stack delay, which can be believable if and only if a small enough

RTT is discovered. Thus it cannot accurately represent the degree of

path congestion. Furthermore, ECN is a passive and delayed mech-

anism for informing congestion level in multiple paths. Thus it can

hardly help achieve timely load balancing. 

Actually the end-to-end latency effectively indicates whether

the path has been congested. Fortunately with the rapid growth

of cloud computing and network functions virtualization (NFV),

the advances in widely used NIC hardware and efficient packet IO

frameworks (e.g. DPDK [14] ) have made the measurement of end-

to-end latency possible with microsecond accuracy. Latency-based

implicit feedback is accurate enough to reveal path congestion [15] .

DPDK now supports all major CPU architectures and NICs from

multiple vendors (e.g. Intel, Emulex, Mellanox and Cisco). A tuned

DPDK solution (e.g. TRex [16] ) only introduces 5–10μs overhead

[17] . With the help of DPDK, the end-to-end latency can be mea-

sured with sufficient precision to sense path conditions. Several

latency-based congestion control protocols for datacenter networks

have emerged (e.g. TIMELY, DX [15] ). But latency-based implicit

feedback has hardly been applied to load balancing schemes. 

Moreover, current load balancing solutions also create new

inaccurate congestion feedback in transport protocols. The end

hosts in present datacenters commonly adopt ECN-based trans-

port protocols (e.g. DCTCP [18] ). Congestion control algorithms

of transport protocols usually adjust the rate (window) of a flow

based on the congestion state of the current path. When rerouting

events happen, outdated ACKs with no ECE mark of the other

path may improperly increase the sending rate (window), while

the ones with an ECE mark will mistakenly decrease the sending

rate. This problem hinders the utilization of link bandwidth espe-

cially under asymmetric topologies, because network asymmetry

creates different network conditions more easily among different

routing paths. 

According to above observation, we find inaccurate congestion

feedback causes inaccurate detection to path conditions and in-

correct flow rate adjustment. This problem is bound to affect the

performance of load balancing ( Sections 2.2 and 2.3 ). Therefore, we

ask the following question: can we design a congestion-aware load

balancing scheme that can achieve accurate congestion feedback

and keep practical? Finally we present ALB to answer this ques-
ion, which is an adaptive load balancing solution implemented

t end hosts. ALB employs accurate latency-based measurement

o detect network path congestion. The latency-based congestion

etection enables ALB to accurately reroute flows. And an ACK

orrection method is used to avoid blindly adjusting the flow rate

t source hosts. 

We make following contributions in this paper: 

• We analyze that inaccurate congestion feedback can degrade

performance under asymmetry in load balancing. 

• We present ALB, an adaptive load balancing mechanism

based on accurate congestion feedback running at end hosts,

which is resilient to asymmetry and readily-deloyable with

commodity switches in large-scale datacenters. 

• In large-scale simulations we show that ALB achieves up to

13% and 48% better flow completion time than CONGA and

CLOVE-ECN under asymmetry, respectively. Under the im-

pact of dynamic network changes, ALB improves the overall

average FCT by 5–42% compared to CLOVE-ECN. And ALB al-

ways keeps the best and stable performance for small flows

under high bursty traffic. Compared with Hermes, ALB re-

quires no complicated parameter settings and provides com-

petitive performance. 

Some preliminary results of this paper were published in the

roceedings of the IEEE/ACM International Symposium on Qual-

ty of Service (IWQoS, 2018) [19] . In this paper, we describe our

otivation with more detailed theoretical and empirical analy-

es, improve the latency-based congestion detection mechanism

 Section 3.2 ) and extend the evaluations for dynamic datacenter

etwork changes ( Section 4.2.2 ). 

The rest of this paper is organized as follows. In next section,

e introduce the background and motivation of designing ALB.

hen we detail ALB in Section 3 . And we evaluate ALB and show

he superiority of ALB compared to other solutions in Section 4 . Fi-

ally we briefly introduce the related work in Section 5 and sum-

arize our work in Section 6 . 

. Background and motivation 

In this section, we describe network asymmetries and traffic

ynamics pose challenges to load balancing and inaccurate con-

estion feedback exacerbates the performance loss. These problems

otivate us to design ALB. 

.1. Network asymmetries and traffic dynamics 

Network asymmetry is common for modern datacenter net-

orks in practice, where different paths between one or more

ource/destination pairs have different amounts of available band-

idth. Link failures and heterogeneous network equipment (e.g.

ifferent link speeds and different number of forwarding ports) can

e common and cause asymmetry [2,7,20,21] . Fig. 1 shows an ex-

mple of asymmetric topology caused by link failure, where the

ink capacity between Spine 1 and Leaf 1 is reduced. As shown in

revious studies [3] , traffic dynamics in production datacenters are

lso common. Path congestion can quickly occur because of burst

raffic and can disappear as some flows finish. In the following we

ill analyze that asymmetry exacerbates the inaccuracy of conges-

ion feedback, which causes performance degradation particularly

or dynamic traffic workloads. 

.2. Inaccurate congestion detection 

ECN-based network protocols have been widely used in data-

enter networks. The congestion detection in many load balanc-

ng schemes deployed at end hosts uses ECN signals as congestion
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Fig. 1. An example of asymmetric topology caused by link failure. All links run at 

10 Gbps. 
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Fig. 2. The accuracy rates of different schemes. 
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eedback (e.g. FlowBender, CLOVE-ECN). FlowBender keeps track of

he fraction of ECN-marked ACKs out of the total ACK packets ev-

ry RTT at source hosts. If this fraction is larger than a certain

hreshold for any flow, this means that this flow is congested and

hould be rerouted. CLOVE-ECN also similarly judges the degree

f congestion based on path weights at source hosts, where path

eights are calculated based on piggybacked ECN signals. How-

ver, the simple ECN-based feedback cannot accurately show the

xact level of congestion on multiple paths under asymmetry. Be-

ause an ECN mark only indicates congestion at a single switch and

annot describe the congestion extent of multiple switches. With

xperiments and theoretical analysis, [15] has observed that ECN

s the congestion feedback is low accuracy and coarse granular-

ty for congestion control. Although outstanding, load balancing al-

orithms can be influenced by inaccurate congestion detection on

ultiple paths and cause unsatisfactory performance. 

In addition, several latency-based congestion control protocols

e.g. DX [15] , TIMELY [13] ) have been designed for datacenter

etworks to improve network utilization, which have shown that

ne-way delay provides richer and faster information about the

tate of network switches than ECN. We can also employ latency

etrics to detect path congestion in load balancing. However,

atency feedback measured at end hosts is still outdated for load

alancing though it provides more accurate congestion metrics

ompared to ECN. This should have a non-negligible impact on

erformance. Therefore, how to provide more timely congestion

eedback is essential. 

To quantify the impact of congestion detection on load balanc-

ng, we run an ECN-based scheme CLOVE-ECN, a latency-based

eedback mechanism and ALB based on the web-search workload

18] under a 4 × 4 leaf-spine topology with 10 Gbps links and

2 servers in NS3 [22] . The latency-based feedback mechanism

ollects RTTs on multiple paths from every ACKs to detect path

ongestion, where the RTTs only contain delays in the network and

ure ACKs are classified into the higher priority queue than data

ackets. We make the topology asymmetric through reducing the

apacity from 10 Gbps to 2 Gbps for 20% of randomly selected leaf-

o-spine links. Because one-way delay directly signal the extent of

nd-to-end congestion [15] , we measure one-way delay to repre-

ent path congestion level. We send probes on each routing path to

imely update one-way delay at every source host. After referring

o the same simulation environment configuration of Hermes and

ur many experimental verifications, we find that a probing inter-

al of 10 0–50 0μs brings good visibility when the one hop delay is

onfigured with 80μs. In this way, every time a flow is rerouted,

e can know if it is switching to the least congested path. If it

oes switch to the least congested path, we record it as a correct

ath selection. As shown in Fig. 2 , the accuracy rate of CLOVE-
CN at all different load levels only accounts for approximately

4%, while the latency-based feedback mechanism can increase

he accuracy to up to 79%. This shows that the path congestion

etection based on latency provides greater accuracy than the

ne based on ECN signals in load balancing. And although latency

etrics measured at end hosts are outdated, they track closely the

orrect path selection in our experiment. Besides, ALB shows the

ighest accuracy at every load level in Fig. 2 . This is because ALB

mploys a novel latency-based congestion detection ( Section 3.2 )

echanism to achieve faster latency feedback. In a word, we

hould adopt accurate congestion detection for load balancing

chemes deployed at end hosts to improve network utilization. 

.3. Inaccurate rate adjustment 

Generally, congestion control algorithms in source hosts adjust

he flow rate according to congestion feedback piggybacked in

CKs. The feedback should represent the congestion state of the

urrent path. But after rerouting events happen between asym-

etric paths, outdated ACKs of the old path owning the different

ink capacity with the current path will improperly affect the flow

ate. Under the situation with ECN-based transport protocols, the

utdated ACK with no ECE mark of the other path may improperly

ncrease the sending rate (window), while the one with an ECE

ark will mistakenly decrease the sending rate. The Fig. 3 shows

 simple example, where flow A is switched from path 1 to path

 because of the decision of load balancing. The outdated ACKs of

ow A denotes the ACKs which reply the data sent at path 1 before

erouting, while the new ACKs denotes the ACKs which reply the

ata sent at path 3 after rerouting. Hence, the congestion states of

ifferent paths are mixed together for the flow A. The sender will

istakenly use ACKs not belonging to the current state to adjust

he sending rate. This phenomenon is also called congestion mis-

atch [2] , which causes the inaccurate rate adjustment problem

nder asymmetry. In order to reveal this problem, we count the

roportion of outdated ACKs of all flows under the experiment for

LOVE-ECN in Section 2.2 . We find the proportion is always around

% on different load level. We next reveal the performance degra-

ation caused by inaccurate rate adjustment with empirical study. 

To quantify the impairment of inaccurate rate adjustment in

oad balancing, we implement a per-packet scheme DRB [23] under

n asymmetric topology in NS3. We use a simple 2 × 2 leaf-spine

opology and a heterogenous network with 2 and 10 Gbps paths

hown in Fig. 4 a. And a reordering buffer is implemented in the

RB to mask packet reordering. DCTCP is used as the default

ransport protocol like most test scenarios in prior load balancing

chemes. As shown in Fig. 4 b, flow A only achieves around 3.7 Gbps

verall throughput. This is because when rerouting happens the

ongestion feedback in ACKs belonging to the path with 2 Gbps

andwidth (the left path) constrains the congestion window,

ausing the throughput loss in the path with 10 Gbps bandwidth
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Fig. 3. An example of inaccurate rate adjustment. 

Fig. 4. Inaccurate rate adjustment causes severe throughput loss. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The design of ALB. 
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(the right path). Similarly, the congestion feedback from the right

path can cause incorrect rate adjustment in the left path, which

may lead to sudden congestion because the left path cannot

immediately absorb such a burst. In other load balancing schemes

vigorous rerouting between two paths also can result in inaccurate

rate adjustment as long as the available bandwidth of this two

paths are different. Some solutions (e.g. Presto [24] , WCMP [20] )

distribute traffic proportionally to path capacity at the system

initialization, but this static setting still cannot avoid performance

loss caused by the inaccurate rate adjustment. The root cause is

the chaos of congestion feedback because of load balancing. 

To handle issues caused by the inaccurate congestion feedback,

an ideal solution should avoid inaccurate congestion detection

and inaccurate rate adjustment in asymmetric topologies. Existing

load balancing schemes either requires custom switches for load

balancing in the network or suffers performance degradation from

inaccurate congestion detection. And current schemes do not solve

inaccurate rate adjustment. This motivates us to design ALB, an

adaptive congestion-aware load balancing solution under asymme-

try, which achieves accurate congestion feedback at end hosts with

commodity switches. In large-scale simulations we show that ALB

provides competitive performance with those schemes requiring

custom switches (e.g. LetFlow, CONGA). 

3. Design 

3.1. Overview 

We present ALB’s framework in Fig. 5 . ALB contains two mod-

ules, which are MDCTCP and ALB core. We design MDCTCP by

slightly modifying DCTCP. MDCTCP is an ECN-based network pro-

tocol. And other three functions, namely source routing, latency-

based congestion detection and accurate flowlet switching, work in

the ALB core. The ALB core is implemented in software in hyper-
isor vSwitch (e.g. Open vSwitch), which is common for current

ulti-tenant datacenters to manager numerous virtual machines. 

The source routing is used for path discovery. The latency-

ased congestion detection provides accurate one-way delay

easurement for each path to detect path congestion. Moreover,

LB divides each flow into flowlets in a fine-grained way while

everaging latency-based congestion detection to select the least

ongested path for new flowlets. And the ACK correction function

ith the cooperation of MDCTCP and ALB core is used to correct

naccurate rate adjustment. 

.2. The detailed design of ALB 

ource Routing. Because we need to reroute flows in different

outing paths at the source side, the source routing is designed for

outing path discovery. For this purpose, we implement an existing

raceroute mechanism [8] in the source vSwitch to detect multiple

outing paths, which has been used in several other schemes (e.g.

LOVE). As we know, commodity datacenter switches inherently

mplement ECMP, and network overlays have been recently widely

dopted in multi-tenant datacenter networks. By sending probes

ith varying source ports, which are encapsulated by overlay

etwork protocols in static ECMP-based datacenter networks, the

ource routing in ALB can find a subset of source ports that lead to

istinct paths. Besides, each probe contains multiple packets with

he same transport protocol source port but with the TTL value

ncremented. We can obtain the list of IP addresses of switch in-

erfaces along that path to distinguish different routing paths. ALB

odifies the source port of tunnel encapsulation (e.g. using State-

ess Transport Tunneling (STT) protocol) to control transmission

ath of every flow. The probes are sent periodically to adapt to the

hanges in the network topology. Because the virtual switch in an

verlay network typically generates Bidirectional Forwarding De-

ection (BFD) probes to all other overlay destinations in every few

undred milliseconds with negligible overhead, if the frequency of

ending probes is about a few hundred milliseconds like BFD, the

verhead in our design should be negligible too [8] . The probes

n ALB are used to find multiple paths in system initialization,
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Fig. 6. An example of measuring one-way delay without time synchronization. 
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u  
nd the probe frequency only determines the reaction time to a

hange in network topology. 

atency-based congestion detection. The latency-based congestion

etection enables ALB to accurately reroute flowlets to the least

ongested paths. ALB measures the RTT and one-way delay for

very flow to judge the degree of path congestion. Compared

ith ECN-based congestion detection, our algorithm can char-

cterize the degree of path congestion more accurately through

he end-to-end delay detection, and feedback congestion met-

ics more quickly by leveraging normal connections of other

ows. It is worth mentioning that to the best of our knowledge,

hough several congestion control protocols (e.g. DX, TIMELY) have

dopted one-way delay as congestion signal, ALB first uses it in

oad balancing. The former adjusts the flow sending rate based on

hanges of the one-way delay on the current routing path, while

he latter uses one-way delays of multiple routing paths to detect

ath conditions for flow rerouting. 

Firstly, we introduce the method to accurately measure latency

etrics. Because RTT contains the delay on the reverse path,

hich introduces noise for determining congestion level on the

orward path, we use one-way delay to judge path congestion.

he main problem of acquiring accurate one-way delay is the

lock synchronization between the source and destination host.

lthough Precision Time Protocol (PTP) can support clock syn-

hronization with sub-microseconds, it still requires periodic

ynchronization to compensate clock drifts. The periodic syn-

hronization may affect the delay measurement in microsecond

evel. And PTP also requires hardware support and possibly switch

upport. Therefore, ALB leverages a technique to measure one-way

elay under the clock without synchronization, which is used in

ome latency-based congestion control protocols (e.g. DX [15] ).

he principle is that we calculate the real one-way queuing delay

y subtracting the baseline delay, which is the one-way delay

easured without clock synchronization when the link is idle (no

ueueing in switches). The baseline delay can be measured by

icking the minimum among enough samples from the current

ne-way delay. For example, as the Fig. 6 shows, the baseline delay

s measured to be 5 s when link is idle. This value includes a clock

ifference, propagation delay (no queuing) and other times due to

ath states. When the link is not idle, a sample value is measured

o be 6 (9 − 3 = 6) seconds because of queuing delay. Thus, we

et 1 (6 − 5 = 1) second one-way queuing delay by subtracting

 from 6. 

Next we detail how to exchange latency metrics for path se-

ection. As Fig. 7 shows, we record NIC time t 1–t 4 into the option

elds of TCP header at the DPDK-based device driver. We update

he baseline delay in every few RTTs to avoid clock drifts problems.

n addition to calculating one-way delay and measuring RTT, ALB

ses a feedback loop between the source and destination vSwitch

o populate remote metrics in the Latency-To-Leaf Table at each

Switch. And we assign IDs to different transmission paths with

he help of source routing. Referring to Fig. 7 for an example, we

escribe the process as the following five steps: 
1. ALB selects transmission path with the smallest one-way

delay in Latency-To-Leaf Table for every new flowlet, and

write the path ID into the fields of tunnel encapsulation. The

source server writes NIC time into t 1 right before the TX. 

2. Right after the RX, the destination server records NIC time

into t 2. The destination vSwitch stores a mapping from the

expected ACK of the packet to t1, t2 and the path ID in

the tunnel encapsulation when it forwards the packet to the

destination host. The destination vSwitch updates the one-

way delay (t2 − t1 − baseline ) to Latency-From-Leaf Table. 

3. When the returned ACK goes through the destination

vSwitch, t 1 and t 2 are filled into the ACK header according

to the timestamp mapping, while the path ID is piggybacked

in the tunnel encapsulation. And right before the TX we fill

t 3 with the NIC time in destination server. One metric from

Latency-From-Leaf Table is inserted in the tunnel encapsula-

tion. 

4. When the ACK arrives at the source server, right after the

RX t 4 is filled into the ACK header. 

5. Finally, when the ACK goes through the source vSwitch, we

can calculate the new RTT value RTT new 

as t4 − t1 − (t3 − t2)

and update this value of path 2 only when RTT new 

≤ RTT old 

( RTT old represents the old RTT value) on this path. Then we

update one metric in Latency-To-Leaf Table with the feed-

back metric in tunnel encapsulation (for path 1). 

It is important to emphasize that we describe a simplified

rocess of exchanging latency metrics above. Actually the feedback

etrics are piggybacked in every packet and one-way delays

re updated after each packet arrives. Besides, we make load

alancing decisions for each flowlet and ACKs. We have improved

he algorithm of the first version in [19] in two ways. On the one

and, we reselect the least congested path for ACKs that encounter

 tuned flowlet timeout to accelerate the return of ACKs. On the

ther hand, in addition to data packets, ACKs are also used to

alculate one-way delays. 

We show the packet header format in an example in Fig. 8 for a

lear description. The data packet carries a path ID (2), which de-

otes its current path, and one feedback metric (3, 500) from local

atency-From-Leaf Table. When it arrives destination vSwitch, the

ne-way delay (t2 − t1 − baseline ) for path ID 2 and the feedback

etric are recorded in Latency-From-Leaf Table and Latency-To-

eaf Table, respectively. Similarly, when an ACK arrives destination

Switch, it should carry one path ID (2), which indicates the trans-

ission path of data previously acked, one feedback metric (1, 700)

nd its transmission path ID (4). The feedback metric are recorded

n Latency-To-Leaf Table and we calculate a new RTT value from

4 − t1 − (t3 − t2) . The one-way delay (t4 − t3 − baseline ) for path

D 4 is recorded in Latency-From-Leaf Table. As this process shows,

LB timestamps packets in the option fields of TCP header so as

o calculate accurate RTT and one-way delay. Two path IDs (e.g.

he path ID 2 and the path ID 4 residing in data packets and ACKs

n Fig. 8 ) and one feedback metric are encoded in the fields of

unnel encapsulation Stateless Transport Tunneling (STT) context.

ne byte is used to encode one path ID, while 5 bytes are used

o encode one feedback metric which contains one path ID and a

ne-way delay requiring 4 bytes. Therefore, we need a total of 7

ytes to encode two path IDs and one feedback metric in the STT

ontext, which containing 64 bits provides sufficient fields for our

esign. We use a round robin fashion to convey feedback metrics

n Latency-From-Leaf Table and the metrics whose values have

een updated since last feedback will be preferentially chosen. 

Through above steps we maintain the corresponding one-way

elay mapping for each path. But over time the baseline one-way

elay may be influenced by the clock drift between two hosts. We

pdate the baseline delay according to the change of RTTs to solve
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Fig. 7. The framework of latency-based congestion detection. 

Fig. 8. The Packet header format in latency-based congestion detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. An example of ACK correction. 
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the problem. Each time the RTT in mapping table is updated with

a smaller or the same value, we need to remeasure the baseline

one-way delay on this path according to previous studies [15] . 

Accurate flowlet switching. Flowlet switching is a widely-used and

fine-grained load balancing strategy, which splits a flow into many

flowlets to route over multiple paths without causing much packet

reordering. Accurate flowlet switching here means that every time

we choose a path for a new flowlet, we always choose the least

congested path according to latency-based congestion detection.

Different from prior schemes relying on ECN-based congestion

detection, when encountering new flowlets ALB always selects the

least congested routing path which has the smallest one-way delay

referring to the Latency-To-Leaf Table in source vSwitch ( Fig. 7 ).

This enables ALB to make more accurate rerouting decisions for

load balancing, which has been shown in Fig. 2 . 

ACK correction. Because congestion control protocols always adjust

flow rate based on the congestion feedback of the current path,

rerouting events can cause a mismatch between the sending rate

and the state of the new path. This is the inaccurate rate adjust-

ment problem as we described in Section 2.3 . ACK correction is

used to handle this problem. 
ACK correction needs to pass the signal of state mismatch to

DCTCP to adjust flow rate. Firstly, the returned ACK should carry

 path ID in the encapsulation header to indicate that previously

ransmitted data of the flow is transmitted on this path (referring

o the path ID 2 in Fig. 8 ). As the example in Fig. 9 shows, the path

D is 2, which means that the congestion information carried by

he ACK belongs to the path with ID 2. Then, when the returned

CK reaches the source vSwitch, ALB calculates the flowlet ID of

his flow according to the fields of protocol header. Afterwards ALB

ets the current mapped path ID according to the flowlet ID in

he Flowlet Table, which is used to record the current transmis-

ion paths of flows. ALB compares whether the mapped path ID is

qual to 2. If they are not equal, which means that the flow has

een switched to a new mapped path and the ACK is outdated,

LB modifies a reserved bit in the TCP header to 1, otherwise sets

he bit to 0. In this way, the reserved bit can indicate whether the

ongestion feedback belongs to the current state. ALB can pass this

ignal to MDCTCP through the reserved bit. We call it Path Change

otification and PCN for short. 

MDCTCP is a congestion control protocol that is slightly modi-

ed based on DCTCP. In MDCTCP the PCN in TCP header joins the

ow rate control. Because zeroing the PCN means that this is a

atched feedback, MDCTCP only adjusts the congestion window

nd threshold when PCN is 0, otherwise we maintain these values

nchanged. Other features of DCTCP are left unchanged. While

CTCP always uses an estimate α to resize it’s window size,
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Fig. 10. FCT of different methods (normalized to ALB). 
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DCTCP adds a conditional statement: 

wnd = 

{
cwnd × (1 − α/ 2) , i f P CN is 0 

cwnd, i f P CN is 1 

(1) 

hus, we eliminate the influence of congestion feedback that

oes not belong to the current state to avoid the inaccurate rate

djustment. When the load is not heavy, there are not many flow

erouting events so the performance of MDCTCP may get close to

CTCP. When the load becomes heavy, more flow rerouting events

ccur. The value α becomes high and even causes the congestion

indow to be mistakenly cut in half in DCTCP (e.g. α = 1 ) due

o outdated ACKs. Therefore the flow sending rate can be limited

ncorrectly. Because of solving this problem MDCTCP can signifi-

antly improve performance at heavy load. The evaluation result

rom Fig. 10 in the next section also validates our analysis, in

hich ACK correction works better at high loads. 

. Evaluation 

We evaluate ALB via the discrete-event network simulator NS3

22] . Our evaluation seeks to answer the following questions: 

How does each design component contributes to perfor-

ance? ( Section 4.1 ) ALB implements a novel latency-based

ongestion detection and an ACK correction method at end hosts.

e evaluate the benefits brought by these two methods sepa-

ately. Results show that both of them contribute to around 10%

verall performance improvements under heavy loads. 

How does ALB perform under traffic dynamics and asymme-

ries? ( Section 4.2.1 ) For the web-search workload, ALB is within

–45% of CONGA and achieves 15–48% better average FCTs than

LOVE-ECN. Besides, ALB obtains up to 4 × better FCTs for small

ows at high loads compared to LetFlow and CLOVE-ECN. For the

ata-mining workload, ALB outperforms CONGA and CLOVE-ECN
y up to 13% and 20%, respectively. All in all, compared with

chemes requiring custom switches (e.g. CONGA, LetFlow), ALB

hows very competitive performance. And ALB greatly outperforms

he schemes which are implemented at end hosts (e.g. CLOVE-

CN). 

How effective is ALB under dynamic network changes?

 Section 4.2.2 ) We simulate the experiment under dynamic net-

ork changes, and results show that ALB can effectively adapt to

he network dynamics, which improves the overall average FCT by

–42% compared to CLOVE-ECN. And ALB keeps the best and stable

erformance for small flows under high bursty traffic. 

.1. Functional verification 

As we analyze in Sections 2.2 and 2.3 , inaccurate congestion

eedback (including inaccurate congestion detection and inaccu-

ate rate adjustment) can degrade performance in load balancing.

n order to demonstrate ALB’s ability to solve these problems, we

un a trace-driven simulation for functional verification, which is

ased on the web-search workload in a 8 × 8 leaf-spine topology

ith 10 Gbps links and 128 servers in NS3. We make the topology

symmetric through reducing the capacity from 10 Gbps to 2 Gbps

or 20% of randomly selected leaf-to-spine links. 

ALB employs ACK correction to avoid inaccurate rate adjust-

ent, while using latency-based congestion detection to improve

he accuracy of congestion detection on multiple paths. In order to

eveal performance benefits of these two optimized methods, we

valuate each of them separately compared with CLOVE-ECN. In

ig. 10 Latency-Only indicates a solution where only latency-based

ongestion detection is implemented, while Correction indicates

 modified CLOVE-ECN where ACK correction is implemented. We

se flow completion time (FCT) as the performance metric (Note

hat we normalize the flow completion time to ALB to better
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Fig. 11. Overall avg FCT in different flowlet timeout (normalized to flowlet timeout 

= 150μs). 
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visualize the results). From Fig. 10 , we can see that Latency-Only

always performs better than CLOVE-ECN, while Correction works

better at high loads ( ≥ 60% load). This because compared to

CLOVE-ECN, Latency-Only can always find a less congested path

for a new flowlet more accurately. When the load gets more aggra-

vated, more paths become congested, therefore the performance

improvement of Latency-Only decreases. Besides, because more

flowlets are created at high loads, more path switching events

occur. Therefore, at high loads ACK correction solves more events

of inaccurate rate adjustment so as to obtain more performance

gains. By combining these two methods, ALB achieves 15–48%

better overall average FCT and 50–149% better 99th-percentile

FCT for small flows than CLOVE-ECN in Fig. 10 . In other words,

the inaccuracies do exist, and the combination of latency-based

congestion detection and ACK correction can provide significant

performance improvements. 

4.2. Performance comparison 

We evaluate ALB in this subsection and compare its perfor-

mance with other representative solutions in large-scale simula-

tions. 

Workloads: We use two widely-used realistic workloads in-

cluding web-search [18] and data-mining [25] , which are obtained

from production datacenters. These two workloads are both heavy-

tailed and most flows generated are small, but the small fraction

of large flows contributes to a great portion of total bytes. Partic-

ularly, the data-mining workload is more skewed with 95% of all

data bytes belonging to around 3.6% of flows that are larger than

35MB, which makes it more challenging for load balancing [7] . 

Metrics. Similar to previous work, we use flow completion time

(FCT) as the primary performance metric. In addition to the overall

average FCT, we also take the FCT for small flows ( < 100KB) and

large flows ( > 10MB) into consideration for better understanding

of performance. And the 99th percentile FCT for small flows is also

an important performance metric. 

Topology. We build a 8 × 8 leaf-spine topology with 10Gbps

links and 128 servers with NS3. Therefore we simulate a 2:1 over-

subscription at the leaf level to meet the typical deployment of

current datacenter networks [7] . 

Methodology: In order to show the performance gain from

solving the inaccuracy problems, besides ECMP we compare ALB

with the following state-of-the-art solutions using DCTCP [18] as

the default transport protocol: 

• Presto. We implement an idealized variant of Presto to pro-

vide best-case performance for Presto, where we employ

per-packet load balancing and a reordering buffer to put all

packets of every flow in order. 

• LetFlow. LetFlow picks paths at random for flowlets in cus-

tom switches. 

• CONGA. CONGA employs global utilization-aware flowlet

switching in custom switches. 

• CLOVE-ECN. CLOVE-ECN leverages ECN-based feedback to

route flowlets at end hosts. Because CLOVE-INT is shown to

be outperformed by CONGA [8] , we do not simulate CLOVE-

INT. 

Note: We do not compare all previous solutions. Because Her-

mes [2] does not have better performance than CONGA in all cases

when there is no switch failure and it introduces a large num-

ber of parameter settings that make it hard to achieve optimal

performance for us, we have not simulated it. Additionally we do

not compare against MPTCP [26] because of performance instabil-

ity and worse performance gains compared with CONGA in many

scenarios. 
We should adopt a consistent and proper flowlet timeout value

n all schemes for fairness. But setting it too small can risk reorder-

ng issue, while setting it too large can reduce flowlet opportu-

ities. Because DCTCP is less bursty than TCP, the default 500μs

owlet timeout value in CONGA is too big [2] . Therefore we try

everal different flowlet timeout values and adopt the most appro-

riate one (250μs) in our simulations. Fig. 11 shows the average

CT of CLOVE-ECN and CONGA in different flowlet timeout values

nder the web-search workload. At low loads the 150μs flowlet

imeout achieves best performance. This is because reducing the

owlet timeout creates more rerouting opportunities. However

hen load increases, too small flowlet timeout obtains degraded

erformance. CLOVE-ECN with 150μs flowlet timeout achieves the

orst performance at 40–80% loads and setting the flowlet time-

ut from 150μs to 250μs improves FCT in CONGA at 80–90% loads.

his because as load increases packets may arrive out of order due

o congestion under asymmetry and more congestion mismatch

vents occur. Therefore, after considering the performance of dif-

erent load levels, we use a modest flowlet timeout (250μs) in our

imulation. 

.2.1. Impact of asymmetric topology 

To compare ALB with above schemes under an asymmetric

opology, we reduce the link capacity from 10 Gbps to 2 Gbps for

0% of randomly selected leaf-to-spine links. We normalize the FCT

o ALB in order to better visualize the results. 

Under the web-search workload: As shown in Fig. 12 , CONGA

erforms the best performance in most cases. ALB and LetFlow

chieve similar performance. Because the web-search workload is

ore bursty and creates a large number of flowlets, in-network

chemes (e.g. CONGA and LetFlow), which require modification

f switches, can balance load more faster than other solutions

eployed at end hosts. But at 20–40% load, ALB performs 21–

4% better than LetFlow. This is because LetFlow is oblivious

o congestion and the load is not heavy. ALB achieves accurate

ongestion detection so as to obtain better performance than

etFlow at light loads. When load gets heavy, LetFlow can quickly

onverge even without good visibility to congestion. Compared

o CLOVE-ECN, ALB always improves the overall average FCT by

5–48%. This is because ALB, as the same as CLOVE-ECN de-

loyed at end hosts, achieves more accurate congestion feedback

han CLOVE-ECN. Besides, previous work [2] show that Hermes

nly achieves similar performance with CLOVE-ECN under the

eb-search workload. Moreover, as shown in Fig. 12 c and d, the

verage and the 99th percentile FCTs for small flows grow dramat-

cally for all of schemes except ALB. And as Fig. 13 a shows, ALB

educes the average FCTs for small flows by a few milliseconds or

ore than ten milliseconds, which greatly improves the quality

f delay-sensitive small request services in web search systems.

his is because under high loads many small flows are broken
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Fig. 12. FCT for the web-search workload in the asymmetric topology (normalized to ALB). 

Fig. 13. Small flow ( < 100KB) avg in the asymmetric case. 
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nto several flowlets, where prior solutions are seriously affected

y inaccurate rate adjustment ( Section 2.3 ). In comparison, ALB

an alleviate the performance degradation due to its accurate rate

djustment. Thus, compare with other schemes, at 90% load ALB

mproves the average and the 99th percentile FCTs for small flows

y 43–174% and 75–129%, respectively. 

Under the data-mining workload: As shown in Fig. 14 , ALB

chieves 2–13% better performance than CONGA for the overall

verage FCT. Note that the data-mining workload contains more

arge flows and has a much bigger inter-flow arrival time. This

eads to much fewer flowlets than under the web-search work-

oad. Under the circumstances, the visibility of network congestion

ecomes especially important for load balancing. As we know,

etFlow is oblivious to path conditions and CLOVE-ECN does

ot achieve accurate congestion detection. Thus, with accurate

ongestion detection ALB achieves 9–18% and 10–20% better
erformance than LetFlow and CLOVE-ECN, respectively. And

ecause CONGA implemented in switches cannot handle the

naccurate rate adjustment problem, ALB can outperform CONGA

lightly. Besides, ALB provides competitive performance on average

CTs for small flows and overall tail latency. As shown in Fig. 14 c,

LB and LetFlow achieve similar performance on average FCTs for

mall flows. Actually as the Fig. 13 b shows, these schemes only

ave differences in microsecond granularity for average FCTs for

mall flows. As shown in Fig. 14 d, in most cases ALB achieves the

inimum overall 99th percentile FCTs. 

For Presto, we take into account the path asymmetry by using

tatic weights (based on the topology) to make load balancing

ecisions [11] . However, Presto does not achieve comparable per-

ormance to ALB as Figs. 12 a and 14 a show. This is because Presto

annot solve inaccurate rate adjustment problem. When load

ets heavy under asymmetry, the congestion window in Presto



142 Q. Shi, F. Wang and D. Feng et al. / Computer Networks 157 (2019) 133–145 

Fig. 14. FCT for the data-mining workload in the asymmetric topology (normalized to ALB). 
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is constrained by the most congested path and the flow rate is

adjusted in a chaotic way. This causes high FCTs under asymmetry.

4.2.2. Impact of dynamic network changes 

As link failures and some network device updates can occur in

datacenters at anytime, the situation of dynamic network changes

should be seriously considered. In order to demonstrate the

ability of ALB to adapt to topology dynamics, we perform above

experiments under dynamic network changes, where we reduce

the link capacity from 10 Gbps to 2 Gbps for 20% of randomly

selected leaf-to-spine links at a certain time when the experiment

is still running. We consider LetFlow, CLOVE-ECN and ALB in this

experiment. Since the link capacity is required by CONGA’s DRE

algorithm [7] to estimate network utilization on each link, it is

difficult for CONGA to estimate link utilization with sufficient

accuracy when the link capacity changes in the system running in

our simulation. So we do not simulate CONGA under this situation.

And LetFlow has shown very close performance to CONGA in our

experiments(in Figs. 12 and 14 ) and previous work [11] also have

verified this. Presto is not considered here because of its high FCTs

under asymmetry. 

As shown in Fig. 15 , LetFlow achieves the best average FCT in

most load levels under the web-search workload. But in order to

distribute traffic efficiently, it requires custom switches, which are

not widely supported by commodity switches. ALB, which is im-

plementable on existing networks, achieves average FCTs that are

only slightly higher than Letflow at high loads: within 19% at 80%

load. Compared to CLOVE-ECN, ALB always improves the overall

average FCT by 15–42%. This is because ALB leverages accurate con-

gestion feedback to timely react to dynamic network conditions.

Moreover, under bursty arrivals of new flows the average and the

99th percentile FCTs for small flows grow dramatically for LetFlow

and CLOVE-ECN as shown in Fig. 15 c and d, while ALB achieves the
est and stable performance at all load levels because it alleviates

naccurate rate adjustment problem. ALB performs increasingly

etter (18–45% and 26–52% respectively for average and the 99th

ercentile FCTs) for small flows compared to Letflow as the load

ncreases. Moreover, because the traffic under the data-mining

orkload is less bursty, the favorable visibility to congestion and

pportune reaction to asymmetries are more crucial for load bal-

ncing. Under this circumstance Letflow achieves suboptimal per-

ormance with congestion-oblivious rerouting and blind flow rate

djustment. As we can see from Fig. 16 a, ALB improves the overall

verage FCT by 5–10% compared to LetFlow that requires advanced

ardware, while ALB performs 5–15% better than CLOVE-ECN. We

an find that even under dynamic network changes and the ex-

remely bursty workload, ALB can timely adapt to these dynamics

o balance load efficiently. When the network becomes asym-

etric under a relatively smooth workload, ALB always maintains

xcellent performance and surpasses several previous solutions. 

.3. Complexity of ALB 

From the perspective of system architecture, ALB and CLOVE-

CN are very similar because they are both mainly implemented

n the hypervisor at end hosts. Thus, in this subsection we discuss

he complexity of ALB by comparing with CLOVE-ECN. ALB still dif-

ers from CLOVE-ECN in that ALB modifies the congestion control

lgorithm in VMs, but this take very little computation overhead

or VMs since we only add several conditional statements based on

CTCP using one extra reserved bit in the TCP header. Therefore,

e focus on the memory and processing overhead of ALB in the

ypervisor. 

Memory overhead: ALB needs to keep congestion state at every

ypervisor for multiple paths, which is similar to the requirements

f CLOVE-ECN. Firstly they both need to use a Flowlet Table at each
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Fig. 15. FCT for the web-search workload under dynamic network changes (normalized to ALB). 

Fig. 16. FCT for the data-mining workload under dynamic network changes (normalized to ALB). 
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Table 1 

Memory usage of CLOVE-ECN and ALB in the simulation. 

Scheme Load level (%) 

20 40 60 80 

CLOVE-ECN 1.51% 2.16% 3.99% 6.30% 

ALB 1.44% 2.11% 4.06% 6.70% 
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hypervisor to track flowlets. Maintaining such a table has proven to

be at low cost [7] . Moreover, CLOVE-ECN uses a path weight table

at each source hypervisor to distinguish different congestion de-

grees of paths. The weights associated with the distinct paths are

continuously adapted based on the congestion feedback obtained

from ECN messages. But ALB uses latency metrics to sense path

conditions. ALB employs two tables, which are Latency-From-Leaf

Table and Latency-To-Leaf Table, to keep latency metrics at each

hypervisor. Obviously, ALB needs to use more memory space. We

use 1 byte to store path ID and 4 bytes to store the one-way delay

or RTT in ALB. Therefore, storing one metric for one path takes 5

bytes and 9 bytes in Latency-From-Leaf Table and Latency-To-Leaf

Table, respectively. Assuming a typical 8 × 8 leaf-spine topology

in datacenters, we at least need to store congestion state for 56

paths in every hypervisor, which means that we need 784 bytes

of extra memory ( (5 + 9) × 56 = 784 ). Even at a 16 × 16 leaf-spine

topology, ALB only uses 3360 bytes of extra memory. This shows

that the memory overhead for storing congestion state in ALB is

negligible for servers in modern datacenters. Finally, we use sim-

ulations to support the analysis. We run CLOVE-ECN and ALB at

a same server based on the web-search workload under a 8 × 8

leaf-spine topology with 10Gbps links and 128 servers in NS3 to

measure their memory usage separately. As Table 1 shows, com-

pared to CLOVE-ECN, ALB consumes the close amount of memory

on a sever with a total memory of 32GB. Although the memory

management in NS3 is different from that in real system, this can

at least explain that ALB does not cause too much memory over-

head in maintaining per-path congestion information. 

Processing overhead: ALB updates RTTs and one-way delays

based on timestamp of packets in every hypervisor to maintain

per-path congestion state, while CLOVE-ECN updates path weights

based on ECN signals. The CPU overhead brought by these two

methods does not make much difference since they are both

simple operations for extracting values and updating local records.

ALB can leverage the same efficient locking mechanisms such as

Read-Copy-Update (RCU) [27] locks as CLOVE-ECN to minimize

blocking of threads when updating state, which is a mechanism al-

ready used for updating per-connection state in the Open vSwitch.

The updates to these data structures for maintaining per-path

congestion state happen in the datapath while maintaining the

line rate throughput of at least 40Gbps per hypervisor [8] . Fur-

thermore, ALB timestamps packets on top of DPDK, which is a

mature technology and can be implemented on a wide variety of

CPU architectures. Besides, ALB adopts a small number of header

fields in the overlay transport protocol STT to convey congestion

information. We know that network overlay has been widely used

in modern datacenters to optimise device functions or reduce the

complexity of the network devices. The CPU overhead caused by

timestamping and using STT protocol should be normal to the

system. Through comparison with CLOVE-ECN and analyse for

other additional operations, the processing overhead introduced

by ALB should be tolerable for servers in modern datacenters. 

5. Related work 

We briefly discuss related work that has informed and inspired

our design. 
Hedera [6] , MicroTE [28] and FastPass [29] use a centralized

cheduler to monitor global network state and schedules flows

venly in multiple paths. They cannot achieve timely reaction to

atency-sensitive application requests and have difficulties handling

raffic volatility. 

Presto [24] , DRB [23] and Flowbender [9] are per-

owcell/packet/flow based, congestion-oblivious load balancing

olutions. They cannot effectively balance traffic without visibility

f dynamic network conditions on multiple paths. 

CONGA [7] , HULA [10] and CLOVE-INT [8] leverage specialized

witches or advanced programmable switches to achieve global

ongestion-aware switching. Though they obtain great perfor-

ance improvements, the switch hardware requirements from

hese schemes pose difficulties for deployment in large-scale

atacenters. And LetFlow also relies on new switch hardware for

mplementation, which splits flows into flowlets in the network

ithout awareness of path congestion. The rerouting events at

n-network switches cannot cooperate with the congestion control

rotocol at the sender, which leads to inaccurate rate adjustment

s shown in Section 2.3 . Due to accurate rate adjustment, ALB

erforms up to 13% better than CONGA under an asymmetric

opology. 

Taking network congestion awareness and deployment chal-

enges into account, some optimized schemes (e.g. CLOVE-ECN

8] , Hermes [2] ) are proposed. CLOVE-ECN leverages per-flowlet

eighted round robin at end hosts to route flowlets. And these

ath weights are calculated according to ECN signals residing in

CKs. Hermes uses packet as the minimum switchable granularity

y exploits ECN signals and coarse-grained RTT measurements to

ense congestion on multiple paths. And it requires many parame-

er settings, which are hard to tune, to effectively sense path state

nd make efficient load balancing decisions. This kind of previous

chemes suffer from inaccurate congestion feedback, which causes

erformance degradation as we showed in Section 4 . 

Finally, all the aforementioned schemes either lack accurate

ongestion feedback, which results in great performance degrada-

ion as we discuss in Section 2.3 , or require custom switch hard-

are for implementation to obtain performance gains. 

. Conclusion 

We propose ALB, an adaptive load balancing mechanism based

n accurate congestion feedback running at end hosts with com-

odity switches, which is resilient to asymmetry. ALB leverages

he latency-based congestion detection to precisely route flowlets

o lighter load paths, and an ACK correction method to avoid inac-

urate flow rate adjustment. We evaluate ALB through large-scale

imulations. Our results show that compared to schemes which re-

uire custom switch hardware for implementation, ALB can pro-

ide competitive performance. 
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