
Computer Networks 143 (2018) 49–61 

Contents lists available at ScienceDirect 

Computer Networks 

journal homepage: www.elsevier.com/locate/comnet 

Host-base d sche duling: Achieving near-optimal transport for 

datacenter networks 

Weibin Xie, Fang Wang 

∗, Dan Feng, Lingling Zhang, Tingwei Zhu, Qingyu Shi 

Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System (School of Computer Science and Technology, Huazhong 

University of Science and Technology), Ministry of Education of China, Wuhan, China 

a r t i c l e i n f o 

Article history: 

Received 22 November 2017 

Revised 16 June 2018 

Accepted 25 June 2018 

Available online 28 June 2018 

Keywords: 

Flow scheduling 

Datacenter network 

Low latency 

Tail latency 

Near-optimal transport 

a b s t r a c t 

Datacenters use limited network resources to host complex and diverse applications, which requires 

transport schemes to treat diverse applications as a black box and provide low latency for latency- 

sensitive applications. Many schemes need to beforehand obtain flow information (e.g., flow size, deadline 

or traffic distribution) or require new hardware design or modification of applications, which leads to dif- 

ficult use and inefficiency in practice. To solve the dilemma, we present Strict Priority Queuing (SPQ), 

an information-agnostic and readily deployable flow scheduling scheme, which provides near-optimal 

flow completion times (FCT) for latency-sensitive applications and effectively harnesses the long-tail be- 

haviors of flows. Unlike the existing in-network priority schemes, SPQ enables host-based, fine-grained 

flow scheduling, leaving the in-network queuing mechanism simple. SPQ does not make any assumptions 

about the availability of any flow information and hence, can be applied to any types of datacenter ap- 

plications. Moreover, SPQ approximates the Least Attained Service (LAS) scheduling discipline and hence 

is a near-optimal solution. Meanwhile, SPQ utilizes two novel feedback adjustment mechanisms to alle- 

viate the possible negative impact of long flows on short flows. Our simulation results demonstrate that 

SPQ effectively addresses some major limitations of the in-network priority schemes, resulting in the 

near-optimal performance in reducing the average and tail latency. For example, the average FCT of short 

flows for SPQ only has a 0–3.5% gap with respect to the ideal information-aware scheme under a Hybrid 

workload. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Today’s datacenter applications are diverse, such as web search-

ng, social networking, recommendation systems, and advertise-

ent systems [1–3] . These applications generate a massive num-

er of latency-sensitive short flows mixed with latency-insensitive

ong background flows, with variable flow sizes and diverse dead-

ine requirements. Meanwhile, short flows need low latency to sat-

sfy user demands. Even a very small delay increase can signifi-

antly impact the user experience and hence, reduce revenue [4–

] . Moreover, for many applications, the flow size is simply un-

nown in advance [7,10] . As a result, transport schemes cannot

ake assumptions about the availability of detailed flow infor-

ation. In addition, packet transfer pacing is generally based on

he feedbacks which incur delays of a round-trip-time (RTT) and

ence, congestion can significantly affect the flow performance.
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lows competing for shared network resources, such as a shared

ink, commonly cause packet losses and retransmissions due to

imeouts [11] . As a result, FCT generally exhibits long-tail behav-

ors, with the tail-length up to two orders of magnitude larger than

he mean [12] . 

Current solutions take two extreme approaches to address

hese problems. On one hand, the information-aware schemes [13–

8] focus on achieving good performance, while largely overlook-

ng the flexibility and complexity of design. On the other hand,

nformation-agnostic schemes [1,2,19–21] , while making no as-

umptions about the availability of detailed flow information and

ence applicable to wide range of applications, offer limited per-

ormance. 

The information-aware schemes need to beforehand obtain flow

nformation, e.g., flow sizes, traffic distribution, and may require

ew hardware design or modification of applications [7,10,13,15] .

hese schemes usually use some mechanisms to definitely distin-

uish different flows based on the flow information, and achieve

ood performance. However, the flow information for datacenter

pplications may not always be available [4–6,22] . Moreover, con-
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veying flow information to the transport layer can also be costly,

especially when such information must be dynamically updated, as

it may require customization of switch hardware or modification of

applications [7,10,23] . 

Current information-agnostic schemes make no assumptions

about the availability of flow information and hence, are appli-

cable to a wide range of datacenter workloads and are gener-

ally easy to deploy, at the expense of offering limited perfor-

mance. They improve FCT for short flows by adjusting flow rates

in response to network condition changes [1,2,7,13,15] . For exam-

ple, L2DCT imitates LAS to adjust the window sizes of flows per

RTT. However, without supporting preemption or explicitly dis-

tinguishing latency-sensitive short flows from latency-insensitive

long flows, the short flows may frequently wait behind the long

flows, resulting in excessively large FCT for latency-sensitive short

flows [12,15] . 

PIAS [7] is a good attempt to strike a balance between the com-

plexity of design and performance gain. PIAS applies the Short-

est Job First (SJF) policy to improve FCT for short flows, with-

out requiring the modification of switches. However, PIAS does

not completely address the problem, as it is a semi-information-

agnostic scheme, which still assumes the availability of flow in-

formation, hence, limiting its scope of applicability, and offers

moderate performance gain. More specifically, PIAS must acquire

the traffic distribution to calculate multiple demotion thresholds.

It is very difficult to accurately predict the demotion thresholds

without precise flow information and hence, PIAS cannot pro-

vide good performance for applications whose flow sizes can-

not be easily predicted. Second, PIAS uses the static demotion

thresholds which cannot effectively fit workloads that change over

time. 

In view of the above status quo, we identify four important de-

sign goals to be achieved to fully tackle the cost or complexity of

design versus performance challenge: 

1. Applicability to a wide range of datacenter applications: The so-

lution must be applicable to different datacenter applications

with or without the availability of flow information. 

2. Near-optimal FCT for short flows: The solution must strive to

lower FCT for latency-sensitive short flows, comparable to the

ideal information-aware schemes, e.g., pFabric [13] . 

3. Dealing with long-tailed distribution effectively: The solution

must be able to harness the tail latency effectively, e.g., effec-

tively lowering 99th and 99.9th percentile FCT for short and

medium flows [12,18,24] . 

4. Low implementation cost: The solution should not require new

hardware design or modification of datacenter applications, and

should be compatible with the existing datacenter transport

protocols. 

In this paper, we present Strict Priority Queue (SPQ), aiming at

achieving the above design goals. More specifically, SPQ is a host-

based, information-agnostic and readily deployable flow schedul-

ing scheme to provide near-optimal FCT for latency-sensitive short

flows and deal with long-tail behaviors effectively. Unlike in-

network priority scheduling schemes, such as pFabric [13] and PIAS

[7] which use the same flow scheduling method at both host side

and switch side, SPQ decouples host-side flow scheduling from

switch-side flow scheduling to approximate the LAS scheduling

discipline, and utilizes the L2DCT [1] protocol and Explicit Conges-

tion Notification (ECN) [25] to provide rate control and loss recov-

ery. Meanwhile, SPQ uses two novel feedback adjustment mech-

anisms to alleviate the possible negative impact of long flows on

short flows. 

Compared with pFabric [13] and PIAS [7] that generally divide

all flows into 8 different priorities, SPQ is able to provide virtu-

ally unlimited number of priority levels, in terms of the number
f bytes of a flow that has been sent to the fabric. This, accord-

ng to the LAS algorithm [1,7] , allows SPQ to achieve near-optimal

cheduling with host-based flow scheduling. At switches, SPQ uti-

izes the simplistic, single First-In-First-Out (FIFO) queue with a

hallow buffer. As a result, in line with the Internet design prin-

iple by pushing the complexity towards to edge of the Internet,

PQ can make full use of the host-side flexibility of dealing with

ows to achieve the near-optimal scheduling order, while keep-

ng the network core simple. This is in stark contrast to the ex-

sting in-network priority scheduling schemes [13,15] that require

ignificant changes to the switches or applications, incurring much

igher costs and less flexibility to adapt to the new application re-

uirements. 

In summary, this paper makes the following key contributions: 

• We analyze the limitations of in-network prioritization and

their inflexibility of adapting to diverse applications and work-

loads, and we identify the root cause of these limitations. 

• We design SPQ, which achieves high performance and is ap-

plicable to any datacenter applications by two key innovations:

decoupling host-side flow scheduling from switch-side flow

scheduling and two novel feedback adjustment mechanisms. 

• We evaluate the performance of SPQ using the NS2 simula-

tor [26] in both non-oversubscribed [13,27,28] and oversub-

scribed fabrics [7] , compared with two information-agnostic

schemes (DCTCP and L2DCT), a semi-information-agnostic

scheme (PIAS), and the ideal information-aware scheme (pFab-

ric). 

Our simulation results demonstrate that SPQ is able to achi-eve

he four design goals. For example, under the Hybrid workload, the

verage FCT of short flows for SPQ only has a 0–3.5% gap to the

deal information-aware scheme (pFabric), and this gap is within

–1.1% under the Data Mining workload. Furthermore, SPQ signifi-

antly outperforms DCTCP, L2DCT, and PIAS for all flow sizes, loads

or all three workloads in two fabrics. For instance: it reduces the

9.9th percentile FCT of short flows by up to 91%, 90%, and 88%

or the three workloads, respectively. Meanwhile, the results also

how that SPQ is effective in avoiding some major limitations of

n-network prioritization. For example, SPQ completely avoids the

acket loss caused by in-network prioritization. 

The rest of this paper is organized as follows. Section 2 presents

he motivations, and analyzes some major limitations for in-

etwork priority schemes. Section 3 presents the design of

PQ. Section 4 describes the implementation details on NS2.

ection 5 describes the experimental evaluation for both non-

versubscribed and oversubscribed fabrics. Section 6 presents the

elated works. Finally, Section 7 concludes the paper. 

. Motivation and problem exploration 

The performance of PIAS is restricted by the static demotion

hresholds and the mismatch between demotion thresholds and

raffic. With the variation of applications, the static demotion

hresholds cannot provide stable performance for different applica-

ions, which can cause severe performance degradation and packet

oss. Meanwhile, the inherent limitations of in-network prioritiza-

ion cause the situation that PIAS cannot provide fine-grained per-

ormance, especially for the tail latency, which is explored and an-

lyzed in Section 5.2.3 . On the other hand, PIAS [7] claims that the

ismatch only incurs an impact about 10% for the average FCT of

hort flows. Because the average FCT of short flows is more de-

endent on the scheduling algorithm. The significant advantage of

n-network prioritization is that it is able to lower the average

atency (average FCT) for short flows over other schemes. How-

ver, due to the static demotion thresholds and inherent limita-
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Fig. 1. A simple example showing that the mismatch between thresholds and workloads leads to a performance decline of PIAS. To simplify the description, we only use 

three priority queues. 
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Fig. 2. Under Web Search workload, the number of packet losses for PIAS with dif- 

ferent demotion thresholds. 

Fig. 3. A simple example showing that PIAS cannot strictly distinguish different 

flows due to the limited number of queues. To simplify the description, we only 

use three priority queues. 

Fig. 4. PIAS: The normalized FCT of three different short flows for Web Search 

workload at various loads. 
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ions of in-network prioritization, the applicable range of PIAS is

estricted, and PIAS fails to provide good performance on reduc-

ng the tail latency (99th and 99.9th percentile FCT), mitigating

pstream bandwidth loss ( Fig. 6 ) and delivering fine-grained FCT

 Fig. 4 ). 

In this section, we explore the inherent limitations of in-

etwork priority schemes, such as pFabric and PIAS. Such sche-mes

enerally assigns all flows to 8 priority levels based on specific

ow information (e.g., flow size, deadline or traffic distribution)

7,13,15,18] . In particular, three major limitations are identified and

heir performance impacts are highlighted based on NS2 simula-

ions for a leaf-spine datacenter topology with the Web Search

orkload which will be described in detail in Section 5.1 . The

opology is a widely used datacenter topology, and the workload

s also a widely-used realistic traffic based on the productions of

atacenters. Then, we summarize the benefits of decoupling host-

ide flow scheduling from switches in addressing these limitations

nd more. 

.1. Static demotion thresholds 

The first limitation of in-network prioritization is that they try

o divide diverse and variable flows with several static demotion

hresholds, which limits their flexibility and range of applicability,

aking them hard to provide steady performance for practical ap-

lications. Flow patterns in datacenter networks may change from

ime to time due to diverse and complex datacenter workloads,

ynamic tuning of these thresholds is impractical as the flow in-

ormation may not be available [6,13,29] . Fig. 1 gives an example,

emonstrating that the performance of PIAS may decline as the

orkload pattern changes. First, three hosts ( A, B, C ), respectively

end different number of bytes ( f A = 10 MB , f B = 50 KB , f C = 5 KB )

o the same switch. To deliver low latency for short flows, PIAS sets

ptimal thresholds (5 KB, 45 KB) for the three priority queues in

he left figure. However, when the workload changes ( f A = 100 MB ,

f B = 1 MB , f C = 100 KB ), the static thresholds do not match the

ew workload. The right figure shows that latency-sensitive short

ows ( f C = 100 KB ) fall into the lowest priority queue, and may

ait behind long flows. This situation is also very common in other

n-network priority schemes. 

To quantify the impact, we implement a simple PIAS experi-

ent on NS2 [26] . In this experiment, we use two series of differ-

nt demotion thresholds for PIAS: one is the optimal thresholds of

he Web Search workload, and the other is the optimal thresholds

or the Data Mining workload. Then we apply both sets of thresh-

lds to the Web Search workload. With the improper thresholds,

.e., the optimal thresholds for Data Mining workload, Fig. 2 shows

hat the number of packet losses rises sharply. A large number of

acket losses would inevitably cause serious bandwidth loss and

imeouts thus retransmissions, causing severe performance degra-

ation. 
.2. Limited number of queues 

The second well-known limitation is that the number of avail-

ble queues in existing commodity switches is limited, usually 4–

0 queues [7,10,13,15] . The in-network priority schemes generally

ark all flows with 8 different priorities at end-hosts, and allows

ervice differentiation among up to 8 flow groups of distinct ranges

f flow sizes [7,13,15,18] . However, this method is coarse-grained,

nd cannot strictly distinguish all flows. For example, Fig. 3 shows

hat PIAS sets two demotion thresholds, i.e., τ = 150 KB and
1 
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Fig. 5. A simple example illustrating that in-network priority schemes lead to up- 

stream bandwidth loss. 

Fig. 6. Under Web Search workload, the number of packet losses for PIAS and 

DCTCP. 
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τ2 = 1 MB , to map flow groups of three size ranges into three pri-

ority queues. Then three different flows ( f A = 150 KB , f B = 100 KB ,

f C = 50 KB ) are mapped in the same highest priority queue. In

this case, in-network priority schemes cannot distinguish the three

flows. In other words, the packets of flow C ( 50 KB ) may wait be-

hind the packets of flow B ( 100 KB ) and flow A ( 150 KB ). However,

the optimal priority order should be A → B → C. This situation is

very common in all queues of in-network priority schemes. 

To quantify the impact, we run a simulation experiment to

count the FCT for three different short flows (50 KB, 100 KB and

150 KB), which are mapped into the same highest priority queue.

We employ the FCT of the shortest flow (50 KB) as the standard to

normalize the other two short flows. Fig. 4 shows that the three

different short flows achieve almost the same FCT at various loads.

Especially, at 30%, 40%, and 50% loads, the shortest flow (50 KB)

has larger FCT than the other two larger short flows (100 KB and

150 KB). The root cause is the lack of service differentiation among

these flows due to coarse-grained priority queuing. 

2.3. Upstream bandwidth loss 

The last well-known limitation is that the in-network prioritiza-

tion means that switches make local decisions for flow scheduling,

which could easily lead to upstream bandwidth loss, especially for

multi-link topologies [10,13,15] . For example, for the scenario de-

picted in Fig. 5 , host B sends 1 MB data flows to receiver C , and

host A sends 100 KB data flows to receiver C at the same time. The

two flows must share the same output port at switch 2 and as-

sume that flow A is mapped to a higher priority queue than flow B .

As a result, packets from flow B cannot be sent until all the packets

from flow A are sent. This, however, may lead to a large number

of backlogged packets or even packet losses for flow B and hence

severe upstream bandwidth loss. 

To quantify the performance impact, we run the Web Search

workload on NS2 to count the number of packet losses of PIAS

[7] and DCTCP [2] , respectively. Fig. 6 shows that the number of

packet losses for PIAS is 2 X − 7 X those for DCTCP at various loads.
ccording to above analysis, a large number of packet losses would

nevitably bring severe bandwidth loss. 

The root cause of these limitations for in-network priority

chemes is that they want to provide the same flow schedul-

ng scheme at both host-side and switch-side. However, the flex-

bility of handling flows has a huge difference between end-

osts and switches. We can implement many fine and compli-

ated flow scheduling operations at end-hosts without any limi-

ations, but cannot do this work at existing commodity switches.

n fact, in-network priority schemes sacrifice the flexibility and

erformance of end-hosts, in exchange for priority scheduling at

witches. This method limits their performance and applicable

ange in return. However, with decoupling host-side flow schedul-

ng from switches, SPQ can avoid these restrictions to obtain the

ear-optimal performance and a widely applicable range. 

.4. Why SPQ works? 

To maximize the datacenter resource utilization, today’s clouds

enerally allow multiple applications to share a physical machine,

.g., using virtual machines, generating a large number of network

ows [30,31] . These flows have to compete together for limited

esources of the same Network Interface Card (NIC). As a result,

he NICs at the hosts become the first and most important con-

ention point of datacenter network fabric [7,13,32–34] . The ability

o effective schedule latency-sensitive short flows versus latency-

nsensitive long flows at individual hosts can directly decide the

erformance of the entire datacenter network, because end-hosts

irectly decide the order and rates that all flows are sent to the

abric. 

Moreover, host-based flow scheduling is free from the three

imitations that plague the in-network priority schemes. First, since

 host only needs to schedule flows emitted from the host itself, it

an provide much finer grained scheduling than a switch, i.e., per-

ow-based, rather than per-flow-group-based scheduling. Second,

ince the lower priority flows are throttled before they emitted

nto the fabric, host-based scheduling does not suffer from the up-

tream bandwidth loss. Third, since the number of priority levels

or host-based flow scheduling is virtually unlimited, host-based

ow scheduling does not need demotion thresholds and hence, is

ree from the drawbacks introduced by demotion thresholds. 

Why can SPQ minimize the average and tail latency of flows,

nd can be applied to any types of datacenter applications with or

ithout the availability of flow information? There are three key

oints that must be explained. First, since we provide near-optimal

cheduling only at the end-hosts, but not at switches, how to relieve

he possible negative impact of long flows on short flows in the fab-

ic? In short, the problem is how to maintain low latency for short

ows in the fabric. SPQ provides two feedback adjustment mecha-

isms to solve this problem: near-optimal scheduling at end-hosts

nd rate control based on the feedbacks of ECN and timeouts. SPQ

tilizes the feedbacks of ECN and timeouts to infer fabric condi-

ions, then decides how much effort must be used to adjust long

ows’ rates at end-hosts. In the premise of minimally sacrificing

he rates of long flows, SPQ maintains low latency for latency-

ensitive short flows. 

Second, why is SPQ a real information-agnostic flow scheduling

cheme with widely applicable ranges? PIAS not only needs to obtain

he traffic distribution in advance, but also requires the datacenter

pplications unvarying. However, SPQ uses the host-based schedul-

ng mechanism to avoid these problems. SPQ does not make any

ssumptions about the availability of any detailed flow informa-

ion and hence, can be applied to any types of datacenter applica-

ions. Therefore, SPQ is a real information-agnostic flow scheduling

cheme with widely applicable ranges. 
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Fig. 7. The schematic diagram of SPQ. 
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Fig. 8. Two different types of congestion that cause high latency for short flows. 
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Third, why can SPQ provide the near-optimal performance in re-

ucing the average and tail latency? About information-agnostic

cheduling algorithms, LAS is one of the best algorithms that min-

mize the average and tail latency [2,27,35] . By decoupling the

ost-side flow scheduling from switches, SPQ can imitate LAS to

chieve the near-optimal scheduling at end-hosts. Meanwhile, SPQ

ses L2DCT [1] to implement rate control and loss recovery, which

lso approximates LAS to adjust the window sizes of flows per RTT.

ence, SPQ is able to provide the near-optimal performance in re-

ucing the average and tail latency. 

. SPQ design 

The purpose of SPQ is to minimize the average and tail la-

ency of flows and to achieve widely applicable ranges. The key

roblem of existing schemes is that they cannot simultaneously

chieve the two goals. In this section, we present SPQ, a host-

ased flow scheduling scheme. Section 3.1 gives a overview and

ection 3.2 presents the design details of SPQ. 

.1. Overview 

SPQ decouples host-side flow scheduling from switches to ap-

roximate the LAS scheduling discipline, and utilizes L2DCT and

CN to provide rate control and loss recovery ( Fig. 7 ). At end-hosts,

PQ marks all flows with different priorities based on the num-

er of bytes that each flow has sent. Unlike in-network priority

chemes that usually divide all flows into 8 different priority levels,

PQ can provide unlimited number of priority levels. In this way,

PQ can more effectively distinguish different flows at the finest

ossible granularity. Due to the high flexibility of handling flows at

nd-hosts and the effective scheduling algorithm, SPQ can achieve

he near-optimal scheduling order at end-hosts. 

At switches, SPQ uses a shallow buffer and the First-In-First-Out

FIFO) policy to avoid these well-known limitations of in-network

riority schemes. In this way, SPQ can be applied to any types of

atacenter applications with or without the availability of flow in-

ormation. In addition, in order to alleviate the negative impact of

ong flows on latency-sensitive short flows, many datacenter trans-

orts [1,2,7,10] employ the shallow buffer which has a small buffer

ize. SPQ also utilizes the shallow buffer to accelerate the rotation

f packets, alleviating the possible negative impact of long flows

n short flows [2,15] . Meanwhile, SPQ utilizes the feedbacks of ECN

nd timeouts to infer the degree of network congestion, then de-

ides how much flow rates should be adjusted for long flows. SPQ

rovides two feedback adjustment mechanisms to adjust the rates

f long flows: near-optimal priority scheduling at end-hosts (the

lue dotted line in Fig. 7 ), and rate control based on the feedbacks

f ECN and timeouts (the red dotted line in Fig. 7 ). 

In summary, SPQ always ensures that the smaller the number

f bytes that a flow has sent into the fabric, the higher priority

t has. If long flows limit the rates of latency-sensitive short flows
n the fabric, inferred by ECN and timeout signals, SPQ adjusts the

ates of long flows. 

.2. The detailed design of SPQ 

We use f i ( q m 

) to denote the flow q from host i , and use q m 

1 ≤ m ≤ n ) to represent the number of bytes that flow f i ( q m 

) has

ent. Without loss of generality, we set: 

 m 

> q m −1 > · · · > q 1 (1)

In what follows, we use Fig. 8 to illustrate how SPQ can achieve

ear-optimal scheduling at end-hosts, and why it can be applied

o any types of datacenters applications with or without detailed

ow information. 

.2.1. Packet scheduling at end-hosts 

Fig. 8 shows that SPQ achieves the near-optimal scheduling or-

er for all hosts, namely: 

f i (q m 

) → f i (q m −1 ) · · · → f i (q 1 ) , (2)

here 1 ≤ i ≤ k , 1 ≤ q ≤ j , 1 ≤ m ≤ n . In the information-agnostic

ase, according to the LAS algorithm, the number of bytes that

ach flow has sent can approximate the real flow size [1,7] . In or-

er to minimize short flows’ FCT, according to the order of bytes

inequality (1)), the near-optimal flow scheduling order for all in-

ividual hosts should follow formula (2). Hence, SPQ can provide

uch finer grained scheduling (per-flow-based) to effectively dis-

inguish all different flows at end-hosts, and is able to avoid the

imitation of having a limited number of queues. 

More specifically, SPQ can classify all flows with virtually un-

imited number of priorities which are used to determine the

cheduling and dropping order of flows at individual hosts. When

 packet arrives to the NIC, if it is identified as a new flow, its pri-

rity would be set as the size of the packet. If not, its priority is set

t the number of bytes that the flow has accumulatively sent into

abric. Upon the arrival of a packet at the NIC, there are two cases

hen the packets from the lowest priority flow will be dropped.

n the first case, when the NIC’s queues are fully occupied, SPQ

ould discard the lowest priority packets. This case is normal pri-

rity scheduling at NIC’s queues, regardless of network congestion.

n the second case, fabric congestion worsens and long flows se-

iously restrict short flows’ rates, which leads to the need to re-

ransmit short flows’ packets. In this case, SPQ discards the lowest

riority packets regardless of whether NIC’s queues are fully occu-

ied or not. 

The above host-based flow scheduling ensures that SPQ

chieves higher bandwidth utilization than in-network priority



54 W. Xie et al. / Computer Networks 143 (2018) 49–61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

b  

L  

S

 

f  

fl

3

 

p  

h  

i  

t

4

 

w

4

 

o  

s  

l  

p  

t

4

 

l

 

E  

E  

fl  

fl  

f  

h  

s  

t  

i  

D  

[

 

v  

s  

s

5

 

p  

v  

u  

W

5

 

fi  

o  

l  

u  
sche-duling schemes, because SPQ shifts the packet loss from fab-

ric to the end-hosts, and the packet loss at end-hosts does not

waste any bandwidth in fabric [13] . 

3.2.2. Packet scheduling at switches 

SPQ’s switches only need a single FIFO queue with a shallow

buffer and Explicit Congestion Notification (ECN) [25] . ECN is a

basic built-in function available for existing commodity switches

[1,2,15] . SPQ does not need priority scheduling at switches. Since

SPQ uses two feedback adjustment mechanisms to maintain low

latency for latency-sensitive short flows, SPQ can also minimize

the average and tail latency of flows without priority scheduling

at switches. Meanwhile, SPQ makes full use of the shallow buffer

to maintain the low latency for short flows in the fabric, as short

flows require low queue occupancy to keep low latency while a

large queue has been built up by long flows [29] . With a shallow

buffer, the latency-sensitive short flows have more opportunities

to occupy queues, and the feedback adjustments can achieve bet-

ter effects to mitigate the network congestion and packet loss. 

3.2.3. Rate control 

Before describing the principle, we first discuss under which

conditions congestion and packet loss take place. Fig. 8 shows two

different types of congestion that cause high latency for packets of

short flows. The first case: there are too many long flows occupy-

ing the queues of switches [15] . The second case: the link is fully

utilized. We should utilize different mechanisms to cope with the

two different cases, as they imply different fabric conditions. SPQ

uses the feedbacks of ECN and timeouts to infer the fabric condi-

tions. 

When the end-host receives an ACK with ECN marking, the con-

clusion is that short flows’ packets do not need to be retransmit-

ted. It implies that the fabric is not fully utilized, but there are too

many packets of long flows competing bandwidth with short flows’

packets. In Fig. 8 , when QueueL 1 ≥ T ( QueueL 1 denotes the queue

length of one switch port, T denotes the ECN marking threshold), it

indicates that there are too many packets of long flows here. In this

case, SPQ utilizes L2DCT [1] to adjust long flows’ window sizes: 

cwnd = cwnd ∗ (1 − b/ 2) (3)

When the end-host does not receive ECN marking, long flows’

window sizes are set as: 

cwnd = cwnd + k, (4)

Where b is the backoff penalty, k is an increment in the con-

gestion window per RTT. L2DCT imitates LAS to adjust the window

sizes of flows per RTT, which is an implicit rate control. Based on

the implicit rate control mechanism, L2DCT defines k and b , which

can be used to adjust the congestion window size per RTT [1] . 

The other case is that the link is almost fully utilized, caus-

ing that the end-host detects a timeout of a short flow’s packet.

In Fig. 8 , we use f k ( j 1 ) to denote one short flow of host k ( j 1 de-

notes the number of bytes that f k ( j 1 ) has sent into fabric). When

the end-host detects a timeout of f k ( j 1 ), it reveals that the link is

almost fully utilized. 

In this case, we should adopt a more strict method to restrict

long flows’ rates. However, in the extreme case ( b = 1 ), L2DCT only

reduces the window sizes of long flows by half [1] . It is not enough

to alleviate the negative impact that long flows limit the rates of

short flows in fabric. On the basis of L2DCT (long flows’ window

sizes are still set as: cwnd = cwnd ∗ (1 − b/ 2) ), SPQ uses the other

feedback mechanism to adjust long flows’ rates: near-optimal pri-

ority scheduling at end-hosts. In this case, SPQ discards the lowest

priority packets which belong to long flows at the NIC’s queues,

until the degree of congestion relieves to the first case. It is worth

noting that SPQ does not discard the lowest priority packets in
he queues of switches, because it would cause serious upstream

andwidth loss. When the degree of congestion falls, SPQ only uses

2DCT to adjust long flows’ rates. Moreover, in the entire process,

PQ uses L2DCT to make the short flows keep normal rates. 

In summary, SPQ uses the feedbacks of ECN and timeouts to in-

er the degree of network congestion, and then decides how much

ow rates should be adjusted for long flows. 

.2.4. Loss recovery 

SPQ uses different retransmission timeouts (RTO) based on the

acket priorities and fabric conditions. At the beginning, all flows

ave the same value of RTO. When an ACK packet with ECN mark-

ng is received, and there are timeouts of packets, SPQ increases

he long flows’ value of RTO. 

. Implementation 

We implement SPQ using NS2 [26] simulations. In this section,

e present each implementation component of SPQ in detail. 

.1. End-host implementation 

We implemented the L2DCT transport protocol and the near-

ptimal scheduling mechanism on NS2. the near-optimal priority

cheduling mechanism built on the top of L2DCT ( Fig. 7 ) is simi-

ar to that of a Linux kernel module. Meanwhile, SPQ encodes all

ackets’ priorities in the IP headers based on the number of bytes

hat each flow has sent into fabric. 

.2. Switch implementation 

There are two key implementations in switches: ECN and shal-

ow buffer. 

ECN : There are two most important parameters for ECN: the

CN marking threshold T and the weight g of the new sample. The

CN marking threshold T has an important effect on the rates of

ows [36] . When T is set to a high value, there are too many long

ows’ packets competing with short flows’ packets for the link in

abric. When T is set to a low value, long flows cannot obtain the

igh throughout performance. Hence, the ECN marking threshold

hould simultaneously deliver low latency for short flows and high

hroughout for long flows [1,2,8] . In addition, the weight g implic-

tly defines the congestion window size of a flow [1] . Referring to

CTCP, we set g = 1 / 16 , and set T = 65 packets for 10 Gbps link

2] . 

Shallow buffer : The appropriate buffer size should greatly alle-

iate the negative impact of long flows on short flows without re-

ulting in too many timeouts. In our simulations, we set the buffer

ize of each port to 360 KB . 

. Evaluation 

In this section, by using the NS2 simulator [26] , we evaluate the

erformance of SPQ compared with four different schemes. We di-

ide the simulations into two parts. We first present the basic sim-

lation settings. Then we evaluate five schemes in two topologies.

e mainly focus on the non-oversubscribed fabric. 

.1. Simulation illustration 

Fabric topology : We use two fabric topologies to evaluate the

ve schemes: a non-oversubscribed network [7,13,27,28] and an

versubscribed network [7] . Both of them use ECMP to implement

oad balancing [37–39] . As for the non-oversubscribed network, we

tilize the leaf-spine topology including 4 spine (core) switches, 9
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Table 1 

Main simulation parameter settings . 

Scheme Parameter 

DCTCP qsize = 240 pkts 

L2DCT ECN _ threshold = 65 pkts 

PIAS min _ rto = 2 ms 

pFabric qsize = 120 pkts 

min _ rto = 250 μs 

SPQ qsize = 240 pkts 

ECN _ threshold = 65 pkts 

min _ rto(short f lows ) = 2 ms 

min _ rto(long f lows ) = 200 ms 
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eaf (top-of-rack) switches, and 144 hosts. It is a widely used data-

enter topology [13,27,28] . Each leaf switch uses 16 10 Gbps down-

inks to connect 16 hosts, respectively, and uses 4 40 Gbps uplinks

o connect 4 core switches respectively. 

The other topology is a 3:1 oversubscribed fabric [7] , including

 spine switches, 3 leaf switches, and 144 hosts. Each leaf switch

s connected to 48 hosts using 10 Gbps links and 4 spine switches

sing 40 Gbps links, thus forming an oversubscribed network. 

Traffic workloads : We use three widely-used realistic datacenter

orkloads: a Web Search workload [12] , a Data Mining workload

27] , and a Hybrid workload [7] that consists of the former two

orkloads. In our simulations, all flows arrive according to a Pois-

on process, and the source and destination of each flow are se-

ected randomly [7,13] . The three traffic workloads have a diverse

ix of short and long flows with long-tailed characteristics [40] . In

he Web Search workload, over 70% of all flows are less than 1 MB ,

owever, over 95% of all bytes are from these flows of which the

ow sizes are larger than 1 MB . The Data Mining workload is more

xtremely skewed: over 90% of flows are under 250 KB , but the

5% of all bytes comes from the 3.6% flows of which the flow sizes

re over 35 MB [13] . Meanwhile, the sizes of short flows in Web

earch workload are larger than those in Data Mining workload.

ence, The Data Mining workload is very easy to handle, but the

eb Search workload is difficult to handle as it is likely that mul-

iple flows are concurrently active in the same link [2,13] . Among

ost of our simulations and analysis, we focus on more challeng-

ng Web Search workload and Hybrid workload. 

Benchmarks : We break down all flows across short flows (0,

00 KB], medium flows (100KB, 10MB], long flows (10 MB, ∞ )

7,13,15,40] . The main objective of this paper is to provide the near-

ptimal FCT for latency-sensitive short flows and to effectively har-

ess long-tail behaviors of flows. Hence, the main performance

etrics of our simulations is the FCT. Meanwhile, for clear com-

arison, we normalize the FCT for all compared schemes. We di-

ide the performance metrics into 4 parts: 

• To show the differences of bandwidth loss, we count the num-

ber of packet losses for DCTCP, PIAS, and SPQ, respectively. 

• To reveal the impact of the limited number of queues, we count

the average FCT of three different short flows (Web Search

workload) for PIAS and SPQ respectively. 

• And we use the average FCT to reveal the differences that

the five schemes deliver low latency for latency-sensitive short

flows. 

• Finally, to show the differences handling long-tailed distribu-

tion, we calculate the 99th percentile and 99.9th percentile FCT

for short flows and medium flows [2,12,24] . 

Compared schemes : We compare SPQ with four datacenter

ransport schemes: two information-agnostic schemes including

CTCP [2] and L2DCT [1] , a semi-information-agnostic scheme

PIAS [7] ), and the ideal information-aware and state-of-the-art

cheme (pFabric [13] ). Meanwhile, we set some main parameters

eferring to the best settings of the four schemes with a few modi-

cations which is more convenient for our simulations. The specific

alues of these parameters can be found in Table 1 . Especially, we

hoose the optimal parameters for PIAS and pFabric based on the

tatic workloads. However, they cannot get these optimal param-

ters for dynamic datacenter applications, it means that the per-

ormance of PIAS and pFabric would fall for dynamic datacenter

pplications. 

Simulation purposes : Since the five schemes have different ap-

licable ranges or restrictions, it is unconvincing if we assess them

bandoning their applicable ranges. Hence, what we care about can

e divided into the following three parts: 

1. Compared with information-agnostic schemes (DCTCP and

L2DCT), SPQ should achieve significant improvements in reduc-
ing the average (average FCT) and tail latency (99th and 99.9th

percentile FCT), and should have the same applicable range

with or without the availability of flow information. Our simu-

lation results demonstrate these advantages of SPQ over DCTCP

and L2DCT. 

2. Compared with the semi-information-agnostic (PIAS), SPQ 

should achieve better performance in lowering the average and

tail latency, and could be applied to any datacenter applica-

tions without the availability of the traffic distribution. Accord-

ing to above explorations ( Section 2 ), we can find that the ap-

plicable range and performance of PIAS are restricted by the

static demotion thresholds and the inherent limitations of in-

network prioritization. These inherent limitations incur serious

packet loss, and PIAS cannot strictly differentiate these different

flows which are mapped into the same priority queue. Mean-

while, due to the static demotion thresholds, PIAS cannot pro-

vide stable performance for dynamic workloads, and PIAS fails

to effectively handle the tail latency (99th and 99.9th percentile

FCT). However, with decoupling host-side flow scheduling from

switches, SPQ does not need demotion thresholds and priority

scheduling in switches, and thus is able to fully avoid these ma-

jor limitations of in-network priority schemes. As a result, SPQ

achieves significant improvements over PIAS in lowering the av-

erage and tail latency and alleviating packet loss. 

3. Compared with the ideal information-aware scheme (pFabirc),

SPQ should achieve the analogous performance on reducing

the average and tail latency of latency-sensitive short flows.

The simulation results demonstrate that SPQ achieves the near-

optimal performance. 

.2. Simulations in the non-oversubscribed fabric 

In this section, we evaluate the five schemes in the non-

versubscribed fabric. We first show the number of packet losses

ith two tables. Then, we compare the average FCT of three differ-

nt flows under the Web Search workload to reveal whether SPQ is

estricted by the number of available queues in existing commod-

ty switches. Finally, we focus on the average and tail latency. 

.2.1. Packet loss 

In-network priority schemes are easy to cause serious upstream

andwidth loss, resulting in a large number of packet losses. Can

PQ avoid this drawback? To explain this problem, we count the

umber of packet losses for DCTCP, PIAS, and SPQ for Web Search

orkload and Data Mining workload respectively. In order to use

he number of packet losses to denote the impact of upstream

andwidth loss, we only count the packet losses in the fabric. We

o not add up the packet losses at end-hosts, as packet loss at end-

osts do not waste any fabric bandwidth [13,15] . In our simula-

ions, we set some very moderate parameters (e.g., min _ rto = 2 ms )

or PIAS, which is beneficial for in-network priority schemes to al-

eviate packet loss. 



56 W. Xie et al. / Computer Networks 143 (2018) 49–61 

Table 2 

The number of packet losses for Web Search workload . 

Load (%) 10 20 30 40 50 60 70 80 90 

SPQ 8 60 107 216 541 891 1906 3307 6782 

DCTCP 55 139 229 468 921 1590 2381 3453 5415 

PIAS 185 768 1653 2527 3466 8566 9574 14,630 20,217 

Table 3 

The number of packet losses for Data Mining workload. 

Load (%) 10 20 30 40 50 60 70 80 90 

SPQ 0 1 1 3 2 1 10 12 4 

DCTCP 10 32 36 63 36 55 76 87 111 

PIAS 3823 6130 9190 12,434 11,251 15,675 18,025 22,339 26,714 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. SPQ: The normalized FCT of three different short flows for Web Search work- 

load at various loads. 
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Tables 2 and 3 show the number of packet losses under the

Web Search and Data Mining workloads, respectively. We can get

three conclusions from the two tables: 

1. First, the two tables demonstrate that SPQ can greatly allevi-

ate upstream bandwidth loss and that the performance gap be-

tween SPQ and PIAS is very large. This is because the host-

based flow scheduling mechanism is able to effectively alleviate

the packet loss in the fabric. 

2. Second, the number of packet losses for SPQ is slightly lower

than those for DCTCP at both workloads (special case: the 90%

load under Web Search workload). The reason is that the near-

optimal scheduling mechanism and two feedback adjustment

mechanisms can effectively ease packet loss for long flows. Fur-

thermore, we can find that the special case is consistent with

the latter simulation results in Section 5.2.3 ( Figs. 10 (a), 11 (a),

and 12 (a)): L2DCT gets slightly worse performance than DCTCP

at 90% load under the Web Search workload. And SPQ uses the

L2DCT protocol to provide rate control and loss recovery. 

3. Last, the packet losses’ number of SPQ and DCTCP are less at

Data Mining workload than those at Web Search workload, re-

spectively, which is consistent with the characteristics of the

two workloads. As the above description ( Section 5.1 ), Data

Mining workload is easier to handle than Web Search work-

load. However, this situation is reversed for PIAS: the number

of packet losses for PIAS at Data Mining workload is larger than

those at Web Search workload. The reason is that long flows’

sizes are larger at Data Mining workload than those at Web

Search workload. And long flows are always mapped into sev-

eral lower priority queues, which causes that more long flows’

packets are dropped under Data Mining workload. 

5.2.2. The average FCT of the same priority short flows 

Limited by the number of available queues in existing commod-

ity switches, in-network priority schemes cannot strictly differenti-

ate these different flows which are mapped into the same priority

queue. Can SPQ avoid this limitation? To explain this problem, we

count the average FCT of three different short flows ( 10 KB , 50 KB ,

and 100 KB ) which are mapped into the same highest priority

queue under Web Search workload. Fig. 9 demonstrates that SPQ

can completely avoid the well-known limitation, because SPQ can

provide much finer grained scheduling (per-flow-based scheduling)

to effectively differentiate these flows at all individual hosts. In de-

tail, the average FCT of three different short flows are divided into

three different levels across all loads. As for PIAS ( Fig. 4 ), however,

the three different short flows ( 50 KB , 100 KB , and 150 KB ) obtain

almost the same FCT at various loads. 
.2.3. Comparison with information-agnostic and 

emi-information-agnostic schemes 

Here, we compare SPQ with two information-agnostic schemes

DCTCP and L2DCT) and a semi-information-agnostic scheme

PIAS). And we employ the FCT of SPQ as the standard to normal-

ze the FCT of other schemes. The results reveal that SPQ outper-

orms DCTCP, L2DCT, and PIAS for the three workloads in the non-

versubscribed network. We mainly make these observations: the

verage, 99th, and 99.9th percentile FCT of latency-sensitive short

ows and medium flows. Meanwhile, we also count the average

CT of overall flows. 

Latency-sensitive short flows: Figs. 10–12 show that SPQ can ef-

ectively minimize the average and tail latency for latency-sensitive

hort flows. Here, we summarize the following conclusions: 

1. Minimizing average latency: SPQ significantly outperforms both

DCTCP and L2DCT for the three workloads, and improves the

average FCT of short flows by up to 56% and 55% under Web

Search workload respectively. Meanwhile, SPQ also achieves

better performance than PIAS for the three workloads. For ex-

ample, SPQ reduces the average FCT of short flows by up to

8%. The reason is that SPQ achieves the near-optimal scheduling

with decoupling host-side flow scheduling from switch-side. 

2. Minimizing tail latency: SPQ significantly outperforms the three

schemes in reducing the tail latency of short flows. In detail,

compared with DCTCP, L2DCT, and PIAS, SPQ reduces the 99th

percentile FCT by up to 67%, 69%, and 24%, respectively, and im-

proves the 99.9th percentile FCT by up to 91%, 90%, and 88%

respectively. We make two more detailed observations. First,

PIAS obtains the poor performance for the 99.9th percentile

FCT ( Fig. 12 (a)). Although in-network prioritization can effec-

tively lower the average latency for short flows, the ability of

handling tail latency is restricted by the inherent limitations of

in-network prioritization. Second, SPQ can effectively harness

the long-tail behaviors of flows, because SPQ can provide much

finer grained scheduling than PIAS (i.e., per-flow-based, rather
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Fig. 10. (0,100 KB]: The normalized average FCT of short flows for three workloads at various loads. 

Fig. 11. (0,100 KB]: The normalized 99th percentile FCT of short flows for three workloads at various loads. 

Fig. 12. (0,100 KB]: The normalized 99.9th percentile FCT of short flows for three workloads at various loads. 

Fig. 13. (100 KB,10 MB]: The normalized average FCT of medium flows for three workloads at various loads. 
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than per-flow-group-based scheduling), which is good for re-

ducing the tail latency. 

Medium flows: For medium flows in (100 KB,10 MB], Figs. 13–15

how that SPQ also significantly outperforms the three schemes for

he three workloads. Under Web Search workload, compared with

CTCP, L2DCT, and PIAS, SPQ reduces the average FCT of medium

ows by up to 37%, 40%, and 15% respectively. Especially, the aver-

ge FCT of medium flows for SPQ is 28% lower than that for PIAS

t 90% load under Hybrid workload. As for Data Mining workload,
PQ also achieves a great improvement of the average FCT over

IAS ( Fig. 13 (c)): SPQ improves the average FCT by up to 25%. To

eliver low latency for short flows, in-network priority schemes

requently discard the packets of lower priority flows, leading to

he moderate performance gain for medium flows. 

How about the tail latency of medium flows? We make two de-

ailed observations. First, SPQ achieves the very obvious advantage

ver DCTPC, L2DCT, and PIAS. For example, compared with DCTCP,

2DCT, and PIAS, under Hybrid workload, SPQ reduces the 99th

ercentile FCT by up to 32%, 26%, and 32% respectively, and re-
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Fig. 14. (100 KB,10 MB]: The normalized 99th percentile FCT of medium flows for three workloads at various loads. 

Fig. 15. (100 KB,10 MB]: The normalized 99.9th percentile FCT of medium flows for three workloads at various loads. 

Fig. 16. Overall average: The normalized average FCT of overall flows for Web 

Search workload and Hybrid workload. 
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duces the 99.9th percentile FCT by up to 36%, 33%, and 41% respec-

tively. Because SPQ is able to utilize the network resource more ef-

fectively, and can avoid hurting the lower priority flows. Second,

PIAS even has worse performance than DCTCP and L2DCT for Web

Search workload and Hybrid workload ( Figs. 14 (a), 14 (b), 15 (a), and

15 (b)). PIAS always discards the packets of lower priority flows to

maintain low latency for short flows, resulting in further enlarging

the tail latency for medium flows. As for Data Mining workload,

the performance gap is more obvious: SPQ improves the 99.9th

percentile FCT by up to 55%, 52%, and 17%, respectively. 

Overall flows: Fig. 16 shows that SPQ still achieves an obvious

improvement for the average FCT of overall flows. Under Hybrid

workload, compared with DCTCP, L2DCT, and PIAS, SPQ improves

the average FCT of overall flows by up to 19%, 18%, and 12% respec-

tively. This is because SPQ can effectively improve the bandwidth

utilization for overall flows. However, under Web Search work-

load, SPQ gets the analogous performance to PIAS at high loads

( Fig. 16 (a)). The reason is that there are too many short flows re-

stricting the long flows’ rates at Web Search workload (more than

half flows). At high loads, the packets of short flows more likely

need to be retransmitted due to timeouts. As a result, in order to
aintain low latency for short flows, SPQ employs a more rigorous

ethod to restrict long flows’ rates. In return, the average FCT of

ong flows would increase, causing that the average FCT of overall

ows for SPQ increases at high loads. However, with the high flexi-

ility and low complexity of design, SPQ effectively addresses some

ajor limitations of the in-network priority schemes, and achieves

he near-optimal performance in lowering the average and tail la-

ency. 

.2.4. Comparison with the ideal information-aware scheme 

How about the performance gap between SPQ and the ideal

nformation-aware scheme (pFabric)? We utilize the FCT of pFab-

ic as the standard to normalize SPQ. Fig. 17 indicates that SPQ

chieves the analogous performance to pFabric. The performance

ap between SPQ and pFabric is very small. At low loads, the av-

rage and 99th percentile FCT of short flows for SPQ are nearly

he same with pFabric. Specifically, under Hybrid workload, the

ap of the average FCT is within 0–3.5%, and the gap of the 99th

ercentile FCT is within 0–7.7%. Under Data Mining workload, the

ap of the average FCT is within 0–1.1%, and the gap of the 99th

ercentile FCT is within 0–1.8%. However, SPQ can be applied to

ny datacenter applications with or without the availability of any

ow information. It is worthwhile to sacrifice a little performance

n exchange for the widely applicable range without any restric-

ions, which is also the main purpose of this paper. 

.3. Simulations in the oversubscribed fabric 

In this section, we run the Web Search workload to evaluate

PQ compared with DCTCP, L2DCT, and PIAS in an oversubscribed

abric. We make the three observations. First, SPQ achieves signif-

cant improvements over the three schemes in lowering the aver-

ge and tail latency for short flows ( Fig. 18 ). For example, SPQ im-

roves the average FCT by up to 28%, 26%, and 5% respectively, and

mproves the 99.9th percentile FCT by up to 57%, 53%, and 32%,

espectively. Second, SPQ also significantly outperforms the three

chemes for medium flows ( Fig. 19 ). For example, SPQ improves

he 99th percentile FCT by up to 26%, 25%, and 44%, respectively,
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Fig. 17. The normalized FCT of short flows for three workloads at various loads. 

Fig. 18. Web Search workload: The normalized FCT for short flows in an oversubscribed network. 

Fig. 19. Web Search workload: The normalized FCT for medium flows in an oversubscribed network. 

Fig. 20. Web Search workload: The normalized average FCT for overall flows in an 

oversubscribed fabric. 
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nd improves the 99.9th percentile FCT by up to 45%, 42%, and 47%,

espectively. Meanwhile, we can find that PIAS gets the poor per-

ormance for medium flows, especially for the tail latency ( Fig. 19

b) and (c)). Because PIAS frequently discards the packets of lower

riority flows to maintain low latency for short flows in the fab-

ic, which is easier to deteriorate the performance of lower priority

ows (including medium flows) in the oversubscribed fabric. Third,

PQ also achieves the best performance for overall flows ( Fig. 20 ):
PQ improves the average FCT by up to 10%, 13%, and 6%, respec-

ively. 

. Related work 

Existing flow scheduling schemes can be divided into three

ategories: information-agnostic scheduling schemes (e.g., [1,2,19–

1] ), information-aware scheduling schemes(e.g., [13–18] ), and the

emi-information-agnostic scheduling scheme (e.g., [7] ). 

Information-agnostic scheduling schemes: These schemes make 

o assumptions about the availability of flow information and

ence, are applicable to a wide range of datacenter workloads and

re generally easy to deploy, at the expense of offering limited

erformance. For example, DCTCP [2] improves the FCT of short

ows by the shallow buffer and ECN [25] . On the basis of DCTCP,

2DCT [1] , D2TCP [21] , MCP [20] , and HULL [19] add new mech-

nisms to lower latency for short flows or satisfy the deadlines

or deadline-constrained traffic respectively. L2DCT mimics LAS

o add size-awareness, and D2TCP [21] adds deadline-awareness.

CP [20] makes use of ECN to provide a more precise rate con-

rol mechanism. However, without supporting preemption or def-

nitely distinguishing latency-sensitive short flows from latency-
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insensitive long flows, these schemes achieve the inferior perfor-

mance [15] . 

Information-aware scheduling schemes: These schemes focus on

achieving good performance, while largely overlooking the flexibil-

ity and complexity of design. For example, they need to before-

hand obtain flow information (e.g., flow sizes, traffic distribution),

and may require new hardware design or modification of appli-

cations, which leads to difficult use and inefficiency in practice.

These schemes generally use prior knowledge to definitely distin-

guish different flows. For example, to imitate the Shortest Remain-

ing Processing Time (SRPT) algorithm, pFabric [13] assumes that all

flow sizes and deadlines are known in advance. Meanwhile, pFab-

ric uses the flow priorities to decide which packet to schedule or

drop. On the basis of prior knowledge, PDQ [14] and D3 [18] use

the switch arbitration and explicit rate control to implement flow

scheduling [7] , and PASE [15] synthesizes the strengths of some

solutions to provide outstanding performance [15] . LSTF [16] sim-

ulates the Least Slack Time First (LSTF) policy. 

Semi-information-agnostic scheduling schemes: The scheme (PIAS

[7] ) attempts to strike a balance between the complexity of design

and performance gain. However, PIAS does not completely address

the problem, as it still assumes the availability of flow information

(i.e., traffic distribution), hence, limiting its scope of applicability,

and offers moderate performance gain. Moreover, PIAS must use

the traffic distribution to calculate multiple demotion thresholds,

which makes these demotion thresholds difficult to fit the work-

loads that change over time. 

7. Conclusion 

In this paper, we present SPQ aiming at achieving near-optimal

transport for datacenter networks while keeping the low complex-

ity of design. SPQ enables host-based, fine-grained flow scheduling,

leaving the in-network queuing mechanism simple. Due to two key

innovations: decoupling host-side flow scheduling from switches

and two novel feedback adjustment mechanisms, SPQ achieves

the near-optimal performance in lowering the average and tail la-

tency, and achieves a widely applicable range without making any

assumptions about the availability of any flow information, new

hardware design or modification of applications. The simulation re-

sults demonstrate that SPQ achieves all of our design goals, and

that it is effective in avoiding some major limitations of in-network

prioritization. 

Future work: We intend to explore an efficient solution for the

deadline-constrained traffic with the high flexibility and low com-

plexity of design. To lower the average latency of flows, many

schemes only need to consider the order how to schedule the

packets of flows. However, to meet the deadlines of deadline-

constrained flows with lowering the latency of flows, transport

schemes must address two problems: in what order to schedule

packets, and when to schedule them. 
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