
1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.2990868, IEEE
Transactions on Network and Service Management

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

IntFlow: Integrating Per-packet and Per-flowlet
Switching Strategy for Load Balancing in

Datacenter Networks
Qingyu Shi, Fang Wang, Dan Feng, Member, IEEE, ACM,

Abstract—Datacenter network load balancing schemes handle
network traffic generated by massive different applications. Some
packet-based or flowlet-based schemes capture traffic bursts
for load balancing. But frequent rerouting within a flow can
mix ACKs belonging to different paths in congestion control
protocols, which adversely affects flow rate control. Besides,
performance optimization effect of flowlet-based schemes may be
less noticeable under smoother workloads. And several packet-
based mechanisms implemented at end hosts can proactively
reroute congested flows based on flow status even under a smooth
workload, but fail to improve performance with the bursty nature
of traffic. Therefore, existing schemes cannot adapt to different
burst levels of dynamic traffic in datacenter networks and still
have significant performance flaws in some ways.

This paper proposes IntFlow, a novel load balancing scheme
that integrates end-host based per-packet monitoring of flow
status with flowlet switching in programable switches. IntFlow
proactively reroutes flows experiencing network congestion or
failures and avoids doing flowlet switching for small flows with
high sending rate. IntFlow can provide excellent performance
under both high burst and smooth workloads. Finally experi-
mental results show IntFlow achieves up to 32% and 28% better
performance than CONGA and Hermes under asymmetries,
respectively.

Index Terms—datacenter networks, load balancing, pro-
grammable switches

I. INTRODUCTION

THE increasing performance demands from datacenter
applications (e.g. big-data analytics, web services, cloud

storage and other cloud applications) pose a great challenge
for datacenter networks. Datacenter networks should provide
large bisection bandwidth and low latency for all different
applications. To achieve this, datacenter networks typically
provide multiple paths between host pairs to support load
balancing, where multi-rooted topologies, such as fat-tree
and leaf-spine topologies, are widely deployed. Balancing
traffic among these different routing paths can greatly improve

Manuscript received June 25, 2019; revised January 19, 2020; accepted
April 23, 2020.

This work was supported by National Defense Preliminary Research
Project No. 31511010202, NSFC No. 61832020, No. 61821003, Fundamental
Research Funds for the Central Universities, CERNET Innovation Project
NGII20170120. (Corresponding author: Fang Wang.)

The authors are with the Key Laboratory of Information Storage System
(School of Computer Science and Technology, Huazhong University of
Science and Technology), Ministry of Education of China, Wuhan National
Laboratory for Optoelectronics, Wuhan 430074, China, and F. Wang is
also with the Shenzhen Huazhong University of Science and Technology
Research Institute, Shenzhen 518000, China. (e-mail: qingyushi@hust.edu.cn;
wangfang@hust.edu.cn; dfeng@hust.edu.cn).

performance for bandwidth- and latency-sensitive datacenter
applications[1], [2], [3].

As the standard load-balancing scheme in today’s dat-
acenters, Equal Cost Multiple Path (ECMP)[4], randomly
distributes flows among multiple paths according to a hash
function using certain tuples from the packet header. ECMP
is widely implemented because it is readily deployed with
standard unmodified TCP/IP stacks and commodity datacenter
switches. However, ECMP can cause significant performance
degradation because of hash collisions and the lack of adapt-
ability to network conditions[5]. Therefore, many excellent
solutions have emerged to achieve better load balancing.

In order to make best use of network resources, load balanc-
ing schemes need to distribute traffic evenly to multiple paths.
Some mechanisms (e.g. Hedera[2], MicroTE[6]) optimize the
path selection with a centralized traffic monitor. But because
of long scheduling intervals, they are not adaptive to the
traffic volatility of datacenter networks, and this is a fatal flaw
for latency-sensitive applications. In contrast, many schemes
(e.g. DRB[7], RPS[8], Presto[9], DRILL[10]) implemented
in end hosts or switches spray the fixed switching units,
including per-packet and per-flowcell, across available paths
to make full use of link resource. They are prone to experience
packet reordering under asymmetric topology[5], [11]. Some
other schemes (e.g. CONGA[12], HULA[13], CLOVE[14])
can split flows into flowlets[15] for load balancing. As we
know, flowlets are bursts of packets from a flow, which
are separated by large enough gaps. Flowlets will not cause
much packet reordering when they are rerouted on different
paths at an appropriate time interval. However, flowlets are
decided by traffic characteristics, which are affected by many
factors such as applications and transport protocols. Therefore
schemes relying on flowlet switching are inherently passive
and cannot always timely react to congestion when the work-
load is smooth. Besides, all schemes mentioned above always
vigorously reroute flows when encountering a fixed switching
unit or a new flowlet, which leads to too frequent rerouting
under heavy loads, where the possibility that small flows
are split into finer-grained units could cause reordering and
increased latency. Another drawback is that frequent rerouting
within a flow can mix ACKs belonging to different paths
in congestion control protocols, which adversely affects flow
rate control because congestion control algorithms consider all
ACKs as congestion feedback signals from the current path to
adjust the rate (window) of a flow. This phenomenon is called
congestion mismatch, which is first unveiled in [5].

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 10,2020 at 02:46:59 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.2990868, IEEE
Transactions on Network and Service Management

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

According to the analysis above, passive, frequent and
vigorous rerouting within a flow can cause unpredictable
packet reordering and congestion mismatch problem, which
can degrade performance. Thus, several solutions (e.g.
FlowBender[16], Hermes[5]) perform proactive load balancing
based on flow status, which includes the remaining flow
size, the sending rate, the congestion state of flow, etc.
FlowBender reroutes flows whenever congestion is detected
by end hosts. but its random and blind rerouting brings sub-
optimal performance under high loads. Hermes detects flow
conditions at end hosts, and reacts by timely yet cautious
rerouting at packet granularity. However, Hermes cannot ac-
curately calculate the cost of congestion mismatch caused by
rerouting, because some metrics such as the flow sending
rate after rerouting on the new path cannot be effectively
measured. Therefore some good rerouting opportunities may
be ignored without flowlet switching. For example, a large
flow can be transmitted on multiple uncongested paths using
flowlet switching, while Hermes may believe that this flow
should be smoothly transmitted at the current path in a larger
time range than the flowlet timeout. In a word, this kind of
schemes do not rely on flowlet switching and ignores the effect
of traffic bursts on improving load balancing performance.

According to our observation, we find that both sufficient
rerouting opportunities and cautious rerouting decisions based
on flow status are extremely important for load balancing.
We ask the flowing question: Can we achieve the above
two aspects at the same time to adapt to dynamic traffic in
datacenter networks? In this paper, we present IntFlow to
answer this question.

IntFlow assesses flow status at end hosts to assist the flowlet
switching at programmable switches (e.g. Barefoot Tofino[17],
Intel’s FlexPipe[18]), which are able to parse packet headers,
match custom fields in headers and perform corresponding
actions. IntFlow makes use of events (e.g. retransmissions
and timeouts), the flow sending rate, the remaining flow size,
which can be estimated with the size sent, and the accurate
latency of current path to judge flow status. The senders at
end hosts mark the congestion status of flows on the field
of encapsulation header with different values based on flow
status in overlay networks[19]. When the flow passes through
the switches, IntFlow exploits the capability of programmable
switches to make deliberate rerouting decisions based on the
congestion mark of the flow and flowlet gaps. In this way,
IntFlow can proactively reroute flows timely once it senses
congestion or failures to make up for the inadequacies of
traditional flowlet switching schemes. Furthermore, IntFlow
reroutes new flowlets cautiously without causing the conges-
tion mismatch problem. In summary, the contributions we
make are three-fold:

• We empirically analyze the limitations of current load
balancing schemes and find that no scheme takes into
account both sufficient rerouting opportunities and cau-
tious rerouting decisions based on flow status.

• We present IntFlow, a novel load balancing solution,
which integrates per-packet and per-flowlet switching in
the network. IntFlow reacts to congestion and failures
timely based on flow status to achieve proactive rerouting,

while performing cautious rerouting for flowlet switching.
• We evaluate IntFlow via large-scale NS3[20] simulations,

showing that IntFlow achieves up to 32% and 28% better
performance than CONGA and Hermes under asymme-
tries, respectively.

In the remainder, supported by an empirical study, we show
the background and our motivation in more detail in section II.
Then we present our mechanism IntFlow in section III. We
evaluate IntFlow and show the superiority of IntFlow com-
pared to other solutions in section IV. We discuss some design
consideration and potential deployment concerns in section V.
Finally we briefly introduce the important related work in
section VI and summarize our work in section VII.

II. BACKGROUND AND MOTIVATION

Current datacenter contains a complex network environ-
ment, which provides several alternative routing paths between
any two end-hosts which are connected by different switches.
Datacenter networks should provide high bandwidth and low
latency to meet the performance requirement of a wide variety
of datacenter applications. Modern datacenter networks mainly
have the following two features:

• Traffic dynamics: Datacenter networks typically have
dynamic traffic[21], [22], [23], [5], where applications
which are sensitive to bandwidth (e.g. MapReduce) and
sensitive to flow completion time (e.g. Memcached) co-
exist. And both smooth and bursty network traffic may
occur in any time.

• Asymmetries: Network asymmetry is common for mod-
ern datacenters in practice[24], [5]. For example, different
paths between one or more source/destination pairs have
different amounts of available bandwidth. This is Because
the datacenter evolvement adding racks and switches can
cause coexistence of heterogenous switches and link or
switch failures can also create asymmetries. Besides,
switch failures such as random packet drops can also
induce topology asymmetry[23], [5].

Balancing load adaptively under above situation is a sig-
nificant challenge. However, current optimized solutions still
have shortcomings. Flowlet switching has been found effective
without causing much packet reordering for load balancing
over asymmetric (e.g. with different available bandwidth)
paths[24]. Many schemes leverage flowlet switching to achieve
fine-grained load balancing, such as CONGA[12], CLOVE[14]
and LetFlow[24]. However, The pure flowlet switching has
two shortcomings. The first is that flowlet switching cannot
timely react to congestion by splitting flows under smooth
traffic. This is because network traffic in datacenters can
be unpredictable with massive different applications. Besides,
DCTCP[25] is less bursty than TCP, which is not conducive to
generating more sufficient inactivity gaps that form flowlets.
And under heavy bursty traffic, end hosts or network devices
can observe a large number of new flowlets. This creates the
second shortcoming, where frequent and vigorous rerouting in
flowlet switching causes congestion mismatch problem. The
problem refers to that rerouting events can cause a mismatch
between the sending rate and the state of the new path because

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 10,2020 at 02:46:59 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.2990868, IEEE
Transactions on Network and Service Management

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

congestion control algorithms adjust the rate (window) of
a flow based on the congestion state of the current path.
Because new flowlets are always switched to the best available
path whenever they are captured in previous schemes, this
problem hinders the utilization of link bandwidth especially
under asymmetric topologies. For example, when rerouting
events happen with ECN-based congestion control protocols,
outdated ACKs with no ECE mark of the other path may
improperly increase the sending rate (window), while the ones
with an ECE mark will mistakenly decrease the sending rate.
And schemes that frequently reroute fixed switching units,
including packets, flowcells and flowlets, among different
paths but do not considering flow status may also cause
congestion mismatch, such as RPS[8], DRILL[10], Presto[9],
CONGA, etc.

Considering problems above, Hermes[5] employs a cautious
rerouting algorithm with per-packet switching based on flow
status and path conditions at end hosts. But it abandons
the flowlet switching, which means it can not take advan-
tage of the bursty nature of traffic. [5] shows that though
Hermes outperforms other flowlet-based schemes under a
smooth workload, under a bursty workload its performance is
surpassed by multiple solutions using flowlet switching in an
asymmetric topology. This is most likely because only relying
on monitoring flow status for load balancing may lose some
good rerouting opportunities. Similarly, FlowBender[16] keeps
a watch on congestion signals for every packet received at
end hosts for proactive rerouting. However, it still dose not
explore the performance improvement with bursty workloads.
And FlowBender brings sub-optimal performance because of
random rerouting for load balancing.

Therefore, though many prior schemes split a flow to a
fixed switching unit, which includes per-packet, per-flowcell
and per-flowlet, provide sufficient rerouting opportunities, they
have the risk of causing packet reordering and congestion
mismatch problems, such as RPS, DRILL, Presto, etc. Besides,
performance optimization effect of flowlet-based schemes may
be less noticeable under smoother workloads. On the contrary,
though schemes rerouting flows at packet granularity based
on flow status can make proactive and cautious load balanc-
ing decisions, they lose the rerouting opportunity based on
traffic bursts. That is, current mechanisms have drawbacks in
handling dynamic traffic and asymmetric topologies in data-
centers, which incurs a significant performance penalty. The
performance loss caused by these problems is experimentally
demonstrated below.

At first, in order to quantify the impairment of congestion
mismatch problem in load balancing, we implement DRB[7]
and a variant of Presto[9] under an asymmetric topology in
NS3. DRB splits traffic to different routing paths at packet
granularity, while Presto leverages flowcells to distribute traffic
proportionally to path capacity. As we analyzed above, DRB
and Presto can result in congestion mismatch because of
frequent and vigorous rerouting in load balancing. We use a
simple 2×2 leaf-spine topology and an asymmetric network
with 2 and 10 Gbps paths shown in Fig. 1a. To mask the
throughput loss caused by packet reordering, we implement a
reordering buffer and set DupAckThreshold to 1000. DCTCP

10Gbps

10Gbps 2Gbps

2Gbps

Flow A

(a) An asymmetric network

20 30 40 50 60 70
3.00

3.25

3.50

3.75

4.00

4.25

4.50

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Time (ms)

Weighted-Presto

DRB

(b) Throughput of flow A

Fig. 1: The congestion mismatch problem causes severe
throughput loss.

is used as the default transport protocol like prior load balanc-
ing schemes.

As the Fig. 1b shows, flow A only achieves a throughput
of around 4 Gbps in DRB and Presto. And Presto spreads
flowcells using 2:10 ratio to match path capacities in our
implementation. The results are similar to [5]. This is because
when rerouting events happen, the congestion feedback of
ACKs belonging to the path with 2 Gbps bandwidth (the
right path) constrains the congestion window, which causes
the throughput loss in the path with 10 Gbps bandwidth (the
left path). Similarly, the congestion feedback from the right
path can cause incorrect adjustment of congestion window in
the left path, which may lead to sudden congestion because
the left path cannot immediately absorb such a traffic burst.
As a result, such a congestion mismatch causes throughput
loss.

TABLE I: The frequency of rerouting under different work-
loads with 80% load level.

Workloads Schemes Small flows Medium flows Large flows

Web-search
Hermes 260 69349 44990

CONGA 107603 3473187 1110189

Data-minining
Hermes 947 604 35839

CONGA 6 32 11

We next quantify the shortcomings of different load bal-
ancing mechanisms when they handle different application
workloads. We implement CONGA and Hermes in NS3 based
on two widely-used realistic workloads (web-search[25] and
data-mining[3]) observed from deployed datacenters in a 8×8
leaf-spine topology with 10 Gbps links and 128 servers under
asymmetry. The web-search workload is much more bursty
than the data-mining workload. CONGA employs per-flowlet
switching in the network and thus it makes full use of traffic
bursts to get a lot of rerouting opportunities. Hermes employs
per-packet switching in end host and achieves proactive rerout-
ing based on flow status.

At first, we count the number of times the flows with
different size change paths to show the frequency of rerouting.
The results are shown in Table I. We can find that CONGA
changes the paths of flows much more often than Hermes
under the web-search workload, while under the data-mining
workload Hermes performs rerouting more frequently. And

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 10,2020 at 02:46:59 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.2990868, IEEE
Transactions on Network and Service Management

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

60% load 80% load
0.90

0.95

1.00

1.05

1.10

1.15

F
C

T
 (

N
o
rm

.
to

 H
e
rm

e
s
)

CONGA(web search)

CONGA(data mining)

Hermes

(a) Overall avg FCT
60% load 80% load

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

F
C

T
 (

N
o
rm

.
to

 H
e
rm

e
s
)

CONGA(web search)

CONGA(data mining)

Hermes

(b) Small flow(<100KB) avg

Fig. 2: FCT statistics in the asymmetric topology(normalized
to Hermes).

flow completion time (FCT) is used as the primary perfor-
mance metric in Fig. 2, where we normalize the FCT to
Hermes in order to better visualize the results. As Fig. 2a
shows, under the web-search workload CONGA outperforms
Hermes by 8%, while Hermes performs over 10% better than
CONGA under the data-mining workload in the results. This
is because CONGA exploits the bursty arrivals of traffic to get
more rerouting opportunities under the web-search workload,
while Hermes not waiting for the flowlet timeout proactively
reroutes flows. But traffic in production datacenters can be
highly dynamic. Besides, as Fig. 2b shows, the average FCTs
for small flows grow dramatically for CONGA as the load
increases in our simulation. As we can see in Table I, rerouting
times for small flows in CONGA are hundreds of times that
in Hermes under the web-search workload. This is because
too many small flows are broken into new flowlets, and thus
they are heavily affected by packet reordering and conges-
tion mismatch. Therefore, flowlet switching needs a cautious
rerouting mechanism to avoid unnecessary path switching for
small flows. All in all, both CONGA and Hermes cannot
achieve adaptive performance for dynamic traffic. This inspires
us to consider how to provide an adaptive rerouting mechanism
for the complex network environment by combining the two
technical advantages of monitoring flow status and flowlet
switching.

According to our observation, applying flowlet switching in
the network has been already a mature technology[12], [13],
[24], [26]. In-network flowlet switching can timely capture
traffic bursts and achieve sufficient visibility for making ap-
propriate load balancing decisions. However, the tremendous
amount of flows in datacenter networks makes it difficult to
monitor flow status in network devices, while end hosts pro-
vide sufficient computing and storage resources to accomplish
this[5]. Thus we attempt to monitor traffic status at end hosts
and pass some information about flow status to network de-
vices. We find current new-generation programmable switches
(e.g. Barefoot Tofino, Intel’s FlexPipe) can help. They allow
users to program the switch packet-processing pipeline without
replacing the switch ASICs(e.g. P4[27]). As the performance
and capability of programmable switches make them appealing
to be used beyond traditional network functionalities, many so-
lutions for in-network computing, caching and load balancing
(e.g. Eris[28], NetCache[29], DistCache[30], HULA, CLOVE-
INT) have emerged. We can also use programmable switches

Switch

End host

Hypervisor

Monitoring module

Proactive rerouting instruction

Cautious rerouting instruction

(Re)Routing module

Global

congestion-aware

flowlet switchingWhen & Where

to (re)route?

Parsing packets

Marking packets

N
e

tw
o
rk

 t
ra

ff
ic Trigger

(Re)Route

Feed

Fig. 3: IntFlow overview.

to design a novel in-network load-balancing scheme to achieve
our goal. In addition to applying the flowlet-based load-
balancing strategy in the network like previous studies[13],
[26], we also define and parse a certain field of packet header
in the programmable switch, which contains the information
about flow status and helps us perform proactive and cautious
rerouting in the network. We detail our design in the next
section.

III. DESIGN

A. Overview

We propose IntFlow, a novel scheme that integrates per-
packet and per-flowlet switching strategy for load balancing.
It exploits programmable switches to perform proactive and
cautious rerouting in the network. Fig. 3 overviews the two
main modules of IntFlow: (1) the monitoring module that is
responsible for monitoring flow status and marking packets;
and (2) the rerouting module that is responsible for making
deliberate load balancing decisions. With these two modules
IntFlow can proactively reroute flows which are experiencing
congestion or failures, and prevent small flows with a high
sending rate being switched to other paths even though en-
countering new flowlets to mitigate performance degradation
due to congestion mismatch and packet reordering. Besides,
IntFlow reroutes new flowlets carefully to make full use of
the bursty nature of traffic. It distributes flowlets within the
emerging programmable switches to achieve best visibility into
the network.

B. The Monitoring Module

The monitoring module leverages the condition sensing
algorithm to perform proactive and cautious instructions. It
firstly discovers congested flows and healthy small flows
that do not need to be rerouted at packet granularity, and
then marks packets with different values on the encapsulation
header based on the overlay network to indicate different
decisions, which are used to assist per-flowlet switching at

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 10,2020 at 02:46:59 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.2990868, IEEE
Transactions on Network and Service Management

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Algorithm 1: Condition sensing
Input: f : every flow generated by applications
Output: IN : rerouting instruction from the

monitoring module
1 for every packet do
2 IN = 0; /* Initialization */
3 if f.packet is a retransmitted packet then
4 IN = 4;

/* Marked as a retransmission
packet */

5 end
6 if f is not a new flow then
7 if f.timeout > Ntimeout or f.retransmission >

Pretrans then
8 IN = IN | 1;

/* Should be rerouted */
9 else

10 if f.delay > TDelay high then
11 if f.size > S and f.rate 6 R then
12 IN = IN | 2;

/* Should be rerouted */
13 end
14 else
15 if f.size < S then
16 IN = IN | 3;

/* Should not be rerouted

*/
17 end
18 end
19 end
20 end
21 return IN ;
22 end

programmable switches. The flow status is marked with a 3-
bit value, which is the value of IN in Algorithm 1.

Every packet generated by applications in datacenters will
go through the monitoring module and get marked by the
condition sensing algorithm, which is shown in Algorithm
1. Firstly, when datacenter networks experience failures (e.g.
switch and link failures or malfunctions) or severe congestion,
many packets will not reach the destination host on time or
be dropped in the network. The highest bit of IN is used
to indicate whether the packet is retransmitted. And thus the
value of IN is marked as 4 for all retransmitted packets (lines
2-5). In our simulation we observe that this kind of packet
drops can trigger TCP retransmissions. So IntFlow calculates
flow retransmission rates (e.g. 1% for the Pretrans referring
to previous study[5]) for every few milliseconds and records
the number of timeouts (e.g. 3 for the Ntimeout) to selectively
and proactively reroute flows (lines 6-8). The value of IN will
be set to IN | 1 to indicate that rerouting is required because
of network failures or severe congestion.

Besides, IntFlow proactively and effectively reroutes flows
that are experiencing network congestion. In addition to that
the load characteristics in datacenters may be stable in many

cases (e.g. in big-data analytics), DCTCP also makes the flow
sending rate smoother. DCTCP always uses an estimate α to
resize it’s window size smoothly:

cwnd = cwnd× (1− α/2) (1)

Thus, pure flowlet switching cannot always timely react to
congestion in datacenter networks. Whether a rerouting event
can improve the flow’s completion time depends on many
factors, such as the remaining flow size and the sending rate.
The packet reordering and congestion mismatch[5] due to
rerouting events can reduce the sending rate at first. Then
the sending rate on the new path will gradually increase.
Therefore, if the current sending rate is already high, the
rerouting may be not benefited. Moreover, frequently rerouting
a flow with a small remaining size may have limited benefit.

Considering the above situation, we perform proactive
rerouting based on flow status, which includes the flow sending
rate, the remaining flow size and one-way delay of the flow. To
achieve this, we use the size a flow already sent to estimate the
remaining size[31], the CONGA’s DRE algorithm to measure
the sending rate and one-way delays to distinguish whether
the flow is experiencing congestion. As the lines 9-13 in
Algorithm 1 shows, IntFlow proactively reroutes a flow that
is experiencing congestion (with a high one-way delay over
TDelay high). This rerouted flow should has an appropriate
remaining size (S) and its sending rate is not very high (R).
The value of IN will be set to IN | 2 to indicate that rerouting
is required because of general network congestion. We set
TDelay high (180µs in our simulations) to be at least base
RTT plus 1.5× of the one hop delay, S to be 600KB and R
to be 30% of the link capacity by default referring to previous
study[5]. The performance of IntFlow is fairly efficient and
stable with the parameter settings in our simulations.

One-way delays which the flow experiences in the network
directly indicate the extent of path congestion[32], [33], [34].
IntFlow can employ In-band Network Telemetry (INT)[35] to
measure one-way delays between VMs which are connected
by different switches in datacenters. INT is a technology
available in programmable switches, which enables network
endpoints to embed instructions in packets, requesting every
network hop to insert network state in packets as they traverse
the network at line rate. INT can capture network latency that
the packet encounters at switches (delta between local egress
timestamp and local ingress timestamp). When the data packet
is received by the destination hypervisor, IntFlow can compute
the one-way delay as a sum of the per-hop latencies (under
the assumption that switching and queueing latencies dominate
and propagation delays are minimal, which is typically true
in today’s networks). IntFlow records the one-way delay for
the flow at the destination hypervisor and encodes it into the
option fields of TCP header in the corresponding ACKs to
inform the source host.

Note that although IntFlow uses a method similar to Hermes
at end hosts to monitor flow status, it is completely different in
design from Hermes. Hermes relies entirely on monitoring at
end hosts to make load balancing decisions, but IntFlow uses
a two-step decision method. IntFlow only marks flows based
on flow status observed at end hosts at the first step. And then

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 10,2020 at 02:46:59 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.2990868, IEEE
Transactions on Network and Service Management

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

64 bits

Outer Mac

header

Outer IP

header

TCP-like

header

STT Frame

header
Payload

……Version Context ……

Fig. 4: Encapsulation with STT headers in IntFlow.

the information about flow status is used for load balancing in
the network switch at the second step. In this way, IntFlow can
explore flowlet switching opportunities in the network while
ensuring the advantages of proactive rerouting in the end hosts.

Moreover, because frequent rerouting in flowlet switching
may negatively affect small flows without cautiously consider-
ing the benefit of rerouting (referring to the empirical study in
Section II), we avoid the uncongested small flows switching
path even though new flowlets appear (lines 14-17). Here we
use one-way delays (TDelay high) to determine the degree of
congestion and a tuned flow remaining size (S) to define small
flows. The value of IN will be set to IN | 3 to indicate that
rerouting is not allowed. If the packet belongs to a new flow or
a normal flow that is not marked in lines 6-20 of Algorithm
1, IntFlow will leverage new flowlets to balance load. The
value of IN will be set to 0 or 4 to indicate that the flow
can be rerouted when it encounters new flowlet timeout in the
network.

Finally, the monitoring module will insert different values
from the output IN of Algorithm 1 into the encapsulation
header in network overlays, which have been recently widely
adopted in multi-tenant datacenter networks[14], [34]. Net-
work overlays leverage an encapsulation header (e.g. Stateless
Transport Tunneling (STT)) to route the packet in the physical
network. IntFlow exploits the STT context (shown in Fig. 4) to
encode the output value IN . STT context field containing 64
bits provides sufficient fields to encode this value. In this way,
the rerouting module in programmable switches can parse the
value IN to identify different flow status, where the actual
load balancing decision will be performed.

C. The Rerouting Module

In addition to recording network latency, the rerouting mod-
ule residing in programmable switches performs actual load
balancing decisions. Unlike previous flowlet-based schemes,
it selectively reroutes flows when encountering new flowlets
due to the traffic burst. The rerouting module parses the
value IN from the encapsulation header of packets, which
is encoded in a fixed format by the monitoring module to
indicate the flow status. Whether to reroute flows needs to
consider the flow status. Previous work has proven that the
sending rate on every particular port of programable switches
can be measured at an acceptable cost[13], [26]. Based the
Discounting Rate Estimator (DRE)[12] algorithm in CONGA,
IntFlow implements a variant of Discounting Rate Estimator
(DREva) to measure the transmission capacity of every link
and conveys real-time path congestion metrics to other leaf

Algorithm 2: Rerouting logic
Input: f : every flow passing through the leaf switches
Input: IN : rerouting instruction encoded by the

monitoring module
Output: port : the output port in the switch

1 for every packet do
2 if f is not a new flow then
3 if (IN&4)! = 0 then
4 update local DREva table;
5 IN = (IN&3);
6 end
7 if IN == 3 or (IN ==

0 and f.flowlet timeout == false) then
8 port = f.old port;

/* Should not be rerouted */
9 else

10 if IN == 1 then
11 port =Min congestionsome ports;

/* Should be rerouted to
the least congested path of
some specific paths */

12 else
13 port =Min congestionall ports;

/* Should be rerouted to
the least congested path of
all paths */

14 end
15 end
16 else
17 port =Min congestionall ports;

/* Choose the least congested
path */

18 end
19 return port;
20 end

switches under the leaf-spine topology. The leaves can use
these metrics to achieve a global congestion-aware view for
load balancing.

TABLE II: Design logic of IntFlow

IN&3 Flow status
(at end hosts)

Whether to reroute
(at programable switches)

0 unassigned state yes only when new flowlets appear

1 failures or severe congestion yes (reroute in some specific paths)

2 general network congestion yes (reroute in all paths)

3 uncongested small flows no

IntFlow takes into account both flow status and traffic char-
acteristics for load balancing through per-packet monitoring
at end hosts and per-flowlet switching at network. To better
illustrate the design logic, we summarize it with Table II. Next,
we analyze the load balancing process according to Table II
and Algorithm 2.

Algorithm 2 shows the rerouting logic at the programable
switch. It is timely triggered for every packet to check the

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 10,2020 at 02:46:59 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.2990868, IEEE
Transactions on Network and Service Management

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

flow status and the flowlet table. IntFlow can detect packet
dropping in the network according to the value of IN because
the retransmitted packets are marked in the highest bit of
IN . Thus, the transmission capacity of every link can be
estimated with network utilization and degree of network
packet dropping. The DREva algorithm maintains a register,
X , which is incremented for each packet sent over the link by
the packet size in bytes. If the packet is retransmitted (lines
3-6), X for the retransmitted link is also incremented by β
times the packet size. X is decremented periodically (every
Tdreva) with a multiplicative factor between 0 and 1, but if
the retransmitted packet occurs, the next periodic X value
reduction will become less, after which it will return to normal.
It is easy to show that under normal conditions without packet
dropping, X is proportional to the rate of traffic over the link.
When some switches failures such as random packet drops
occur under a symmetric network topology, X is likely to have
a larger value on the link with a higher packet dropping rate.
DREva here uses a similar method to the DRE algorithm to
obtain the congestion metric of the link by quantizing X/Cτ
to 3 bits (C is the link speed and τ is a tuned parameter).
But DRE does not consider the impact of packet dropping in
the network, which causes severe performance loss under the
scenario of random packet drops in our evaluation.

As lines 7-9 in Algorithm 2 shows, for the uncongested
small flows (the value of IN is 3) and flows in unassigned
state (the value of IN is 0) not reaching the flowlet timeout,
IntFlow does not reroute them. On the contrary, those pure
flowlet-based schemes (e.g. CONGA, LetFlow) may vigor-
ously reroute small flows as long as the flowlet times out.

Besides, based on the global congestion awareness the flow
is rerouted to the least congested path of some specific paths,
which are other available paths except the current forwarding
path , when the value IN of the flow is 1 (Algorithm 2 lines
9-10). This is because according to the flow status, IntFlow
believes that the current path has a high probability of network
failure and severe network congestion, thus the flow is rerouted
to other paths as much as possible. When the flow is in
unassigned state and encounters a new flowlet (the value of
IN is 0 and the flowlet times out), or is experiencing general
network congestion (the value of IN is 2), it is rerouted to
the least congested path of all paths (lines 12-13). And if the
flow is observed as a new flow at the switch, it is forwarded
to the least congested path of all paths (lines 16-17). In a
word, IntFlow can proactively reroute the flows suffering from
failure/timeout and congestion, and also properly leverage
rerouting opportunities of flowlet switching.

To summarize, IntFlow achieves proactive and cautious load
balancing by integrating end-host based per-packet monitoring
of the flow status with flowlet switching in programable
switches.

IV. EVALUATION

We evaluate IntFlow compared with the state-of-the-art load
balancing schemes to study the performance improvement in
large-scale simulations. All experiments are implemented on
the discrete-event network simulator NS3[20]. Our evaluation

seeks to show whether IntFlow can perform optimally under
traffic dynamics and asymmetries in datacenter networks.

Topology: We build a 8×8 leaf-spine topology with 10Gbps
links and 128 servers with NS3. There are 8 equal cost paths
between any pair of hosts that are connected by different
switches. Therefore we simulate a 2:1 oversubscription at the
leaf level to meet the typical deployment of current datacenter
networks[12].

Workloads: We use two widely-used realistic workloads
(web-search[25] and data-mining[3]) observed from deployed
datacenters to provide traffic dynamics for evaluations. As
shown in previous work[12], [13], [5], [24], both of these
workloads are heavy-tailed and most flows are small, but the
small fraction of large flows contributes to a great portion
of total bytes. And the web-search workload is more bursty,
while the data-mining workload is more skewed with 95%
of all data bytes belonging to ∼3.6% of flows that are larger
than 35MB[12]. Thus, it is more challenging for flowlet-based
schemes to balance load under the data-mining workload. We
generates flows between random senders and receivers under
different leaf switches according to Poisson processes with
varying traffic loads.

Metrics: Similar to previous work, we use flow completion
time (FCT) as the primary performance metric. In addition to
the overall average FCT, we also take the FCT for small flows
(<100KB) and large flows (>10MB) into consideration for
better understanding of performance. And the 99th percentile
FCT for small flows is also an important performance metric.

Methodology: In order to show the performance gains
of IntFlow, besides ECMP we compare IntFlow with the
following state-of-the-art schemes using DCTCP[25] as the
default transport protocol:

• LetFlow. LetFlow simply picks a random path for each
flowlet at network switches.

• CONGA. The scheme CONGA employs global
utilization-aware flowlet switching at network switches.

• CLOVE-ECN. CLOVE-ECN leverages ECN-based feed-
back to route flowlets at end hosts. Because [14] has
shown that CLOVE-INT is outperformed by CONGA,
we do not simulate CLOVE-INT.

• Hermes. Hermes leverages its comprehensive sensing to
detect path conditions for every packet at end hosts, and
it reacts using timely yet cautious rerouting but does not
wait for flowlets.

Note: We do not show FCTs of all previous solutions
in our simulations, which includes MPTCP, Presto, DRILL,
etc. MPTCP[36] shows performance instability and worse
performance gains compared with CONGA in many scenarios.
Presto[9] and DRILL[10] suffering from packet reordering
and congestion mismatch fail to provide performance beyond
CONGA or Hermes under high asymmetries[5], [11]. We
adopt a consistent flowlet timeout value (e.g. 250µs) in all
schemes for fairness. If the flowlet timeout value is set
too small, flowlet-based solutions cause serious performance
losses because of congestion mismatch under asymmetry. But
because DCTCP is less bursty than TCP, the default 500µs
flowlet timeout value in CONGA is too big. Therefore we try

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 10,2020 at 02:46:59 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.2990868, IEEE
Transactions on Network and Service Management

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

several different flowlet timeout values and adopt the most
appropriate one (250µs) in our simulations.

A. Asymmetries Caused by Different Link Speeds

To compare IntFlow with other schemes under an asym-
metric topology, we reduce the link capacity from 10Gbps to
2Gbps for 20% of randomly selected leaf-to-spine links. We
normalize the FCT to IntFlow in order to better visualize the
results.

As we analyze in section II, frequent rerouting based on per-
flowlet switching causes degraded performance and proactive
rerouting based on flow status can lose many rerouting op-
portunities. And IntFlow achieves proactive and cautious load
balancing decisions to solve above problem. Therefore, at first
we verify whether IntFlow can provide appropriate rerouting
frequency under different application workloads.

TABLE III: The frequency of rerouting flows.

Workloads Schemes Small flows Medium flows Large flows

Web-search
Hermes 260 69349 44990

CONGA 107603 3473187 1110189

IntFlow 65381 3351111 1033257

Data-minining
Hermes 947 604 35839

CONGA 6 32 11

IntFlow 747 920 26582

Table III shows the frequency of rerouting flows in different
schemes under the web-search and data-mining workload at
80% load level. For the web-search workload, IntFlow has
much more rerouting times than Hermes to explore perfor-
mance gains. IntFlow achieves cautious rerouting to avoid un-
necessary rerouting events that degrade performance, and thus
it has smaller rerouting frequency than CONGA. Especially
for the small flows under the web-search workload IntFlow re-
duces rerouting times by 40% compared to CONGA. CONGA
can cause high FCTs for small flows at high loads due
to frequent rerouting[5], while IntFlow does not reroute the
uncongested small flows. For the data-mining workload, which
is much smoother than the web-search workload, IntFlow
obtains more good rerouting opportunities than CONGA in
Table III. Because IntFlow makes proactive load balancing
decisions at end hosts while CONGA always passively waits
for new flowlets to reroute. Compared to Hermes, IntFlow
has different rerouting frequency for flows with different size
under the data-mining workload due to different load balancing
mechanisms. In summary, IntFlow does not reroute small
flows frequently under high load level, but it can make best
use of traffic bursts to reroute flowlets. And IntFlow can
obtain sufficient load balancing opportunities under smooth
workload (data-mining) through proactive rerouting. Next we
will expose the performance benefits of IntFlow.

Under the web-search workload: As shown in Fig. 5,
IntFlow achieves almost the same performance compared to
CONGA (within a performance gap of -8% to 6%), and outper-
forms other schemes. When loads become heavy, all schemes
achieve similar performance except CLOVE-ECN. This is
because the web-search workload contains many small flows

and is also high bursty. These schemes employing in-network
flowlet switching can quickly converge to a balanced load
with enough flowlets. And Hermes leverages congestion-aware
per-packet switching to improve performance. But because
IntFlow can make most of good rerouting opportunities from
flowlet switching and proactively reroute flows experiencing
congestion or failure, at 20-40% load it performs 24-28%
and 15-28% better than LetFlow and Hermes, respectively.
Moreover, IntFlow outperforms CLOVE-ECN by up to 50%.
CLOVE-ECN leverages ECNs to sense path congestion and
is implemented at end hosts. It obtains worse visibility than
IntFlow. And LetFlow is a congestion-oblivious scheme using
in-network random-hashing flowlet switching. It is similar
to CONGA and cannot always proactively react to conges-
tion. Compared to Hermes, IntFlow improves FCTs for both
large and small flows. This shows that IntFlow can not only
proactively reroute flows based on flow status, but also take
advantage of flowlet switching at the right time.

Those flowlet-based schemes can negatively affect small
flows with absolute rerouting. As we can see in Fig. 5c and
5d, the average and the 99th percentile FCTs for small flows
grow as the load increases or stay high in most flowlet-based
solutions. Compare with other flowlet-based schemes, at 80%
load IntFlow improves the average and the 99th percentile
FCTs for small flows by 28-62% and 26-62%, respectively.
This is because small flows are broken into several flowlets
under high loads. This causes packet reordering and congestion
mismatch problems for these pure flowlet-based schemes. And
IntFlow monitors flow status to make cautious decisions. In
IntFlow small flows observed with no network congestion will
not be rerouted, while the ones experiencing congestion and
encountering new flowlets will be rerouted. Therefore, IntFlow
prevents some normal small flows from being rerouted and
selectively reroutes other congested small flows. In this way,
IntFlow alleviates congestion mismatch problem by reducing
unnecessary flow switching. And Hermes solves congestion
mismatch to some extent using comprehensive sensing and
cautious rerouting for per-packet as the Fig. 5c and 5d show,
where Hermes only performs worse than IntFlow. But IntFlow
still achieves better average FCTs for small flows than Hermes
by 10-29%. This is because IntFlow exploits good rerouting
opportunities from flowlet switching besides achieving cau-
tious rerouting.

Under the data-mining workload: As shown in Fig.
6, IntFlow outperforms all other schemes in most cases.
IntFlow achieves 15-32% better performance than CONGA.
This is because the data-mining workload contains more large
flows and is significantly less bursty. Previous flowlet-based
schemes (including CLOVE-ECN, LetFlow and CONGA)
cannot timely react to path congestion because there are
not enough flowlet gaps under workloads with low bursty.
IntFlow leverages the monitoring module at end hosts to
proactively reroute flows when sensing congestion/failure.
Besides, because IntFlow reroutes new flowlets at the right
time to improve performance compared to Hermes, IntFlow
performs 2-11% better than Hermes. For the average FCTs for
small flows and overall 99th percentile FCTs, IntFlow always
achieves the best performance as the Fig. 6c and 6d show.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 10,2020 at 02:46:59 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.2990868, IEEE
Transactions on Network and Service Management

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

20 40 60 80

1.0

1.5

2.0

F
C
T
(N
o
rm
.
to
In
tF
lo
w
)

Load(%)

CLOVE-ECN CONGA

Hermes LetFlow

IntFlow

(a) Overall avg FCT

20 40 60 80
0.5

1.0

1.5

2.0

2.5

F
C
T
(N
o
rm
.
to
In
tF
lo
w
)

Load(%)

CLOVE-ECN CONGA

Hermes LetFlow

IntFlow

(b) Large flow (>10MB) avg

20 40 60 80
0.5

1.0

1.5

2.0

2.5

3.0

F
C
T
(N
o
rm
.
to
In
tF
lo
w
)

Load(%)

CLOVE-ECN CONGA

Hermes LetFlow

IntFlow

(c) Small flow (<100KB) avg

20 40 60 80
0.5

1.0

1.5

2.0

2.5

3.0

3.5

F
C
T
(N
o
rm
.
to
In
tF
lo
w
)

Load(%)

CLOVE-ECN CONGA

Hermes LetFlow

IntFlow

(d) Small flow 99th percentile

Fig. 5: FCT for the web-search workload in the asymmetric topology (normalized to IntFlow).

20 40 60 80

0.8

1.0

1.2

1.4

1.6

1.8

2.0

F
C
T
(N
o
rm
.
to
In
tF
lo
w
)

Load(%)

CLOVE-ECN CONGA

Hermes LetFlow

IntFlow

(a) Overall avg FCT

20 40 60 80

0.5

1.0

1.5

2.0

F
C
T
(N
o
rm
.
to
In
tF
lo
w
)

Load(%)

CLOVE-ECN CONGA

Hermes LetFlow

IntFlow

(b) Large flow (>10MB) avg

20 40 60 80
0.5

1.0

1.5

2.0

2.5

3.0

F
C
T
(N
o
rm
.
to
In
tF
lo
w
)

Load(%)

CLOVE-ECN CONGA

Hermes LetFlow

IntFlow

(c) Small flow (<100KB) avg

20 40 60 80

0.5

1.0

1.5

2.0

F
C
T
(N
o
rm
.
to
In
tF
lo
w
)

Load(%)

CLOVE-ECN CONGA

Hermes LetFlow

IntFlow

(d) Overall 99th percentile

Fig. 6: FCT for the data-mining workload in the asymmetric topology (normalized to IntFlow).

This is because IntFlow proactively reroute those large flows
experiencing congestion in the data-mining workloads, and
cautiously reroute small flows to avoid congestion mismatch.

Finally we also implement an idealized variant of Presto[9],
which provide best-case performance for Presto. It employs
per-packet load balancing and a reordering buffer to put all
packets of every flow in order. Because its performance is
very unsatisfactory under asymmetries, we do not compare
it with other schemes in the figure. We take into account
the path asymmetry by using static weights (based on the
topology) to make load balancing decisions[24]. However,
Presto causes high FCTs under asymmetry and does not
achieve comparable performance to IntFlow. This is because
congestion mismatch problem. When load gets heavy under
asymmetry, the congestion window in Presto is constrained
by the most congested path and the flow rate is adjusted in a
chaotic way.

B. Asymmetries Caused by Random Packet Drops

As switch failures such as random packet drops can also
induce topology asymmetry[23], [5], we simulate the silent
random packet drop scenario to inspect the performance of
IntFlow, where we set the drop rate to 2% on a randomly
selected core switch. Fig. 7 shows the performance of different
schemes under the web-search workload.

At first, we can observe that IntFlow achieves 14-24%
better performance than CONGA in Fig. 7a. This is because
flows traversing the failed switch tend to have a low sending
rate due to frequent packet drops and CONGA always shifts
more traffic to the failed paths because it senses and balances
load based on network utilization according to the DRE

20 40 60 80
0

5

10

15

20

F
C
T
(m
s
)

Load(%)

LetFlow CONGA

Hermes IntFlow

(a) Overall avg FCT

20 40 60 80
0

1

2

3

F
C
T
(m
s
)

Load(%)

LetFlow CONGA

Hermes IntFlow

(b) Small flow (<100KB) avg

Fig. 7: Performance with random packet drops (web-search).

algorithm. LetFlow is comparatively less affected because of
the random rerouting strategy. IntFlow leverages the DREva
algorithm to choose the best rerouting path in the network,
which calculates the least congested path based on network
utilization and retransmitted packets. Therefore, IntFlow can
sense excessive retransmitted packets to prevent too much
traffic from flowing through the failed switch. But IntFlow
is still within a performance gap of -9% to 8% compared with
Hermes. This is because Hermes does not capture flowlets
to reroute flows under the high burst workload. Hermes can
sense the switch failures and avoid routing through the failed
switch. IntFlow relies on flowlet switching for load balancing,
and uses network utilization for congestion estimation. Fig.
7b shows that Hermes achieves the best performance for the
average FCTs for small flows and IntFlow obtains 19-39%
better performance than CONGA.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 10,2020 at 02:46:59 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.2990868, IEEE
Transactions on Network and Service Management

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

C. Different transport protocols

We fnally check the performance of IntFlow with TCP under
the same situation under asymmetries caused by different link
speeds in above simulation. As the Fig. 8 shows, IntFlow
obtains the best performance. Since TCP is more bursty, we
set the flowlet timeout to be 500µs for CONGA and IntFlow
as suggested in previous work[12], [5], [24]. Under the web-
search workload, IntFlow outperforms Hermes by up to 30%
and performs almost identically to CONGA under heavy loads.
Under the data-mining workload, IntFlow achieves 2-26%
and 13-22% better performance than CONGA and Hermes,
respectively. After many experiments, we observe a similar
trend for DCTCP in section IV, except that CONGA and other
flowlet-based schemes performs better. This is because TCP
is more bursty, which creates more sufficient flowlet gaps.

20 40 60 80
0.0

0.5

1.0

1.5

2.0

F
C
T
(N
o
rm
.
to
In
tF
lo
w
)

Load(%)

CONGA Hermes

IntFlow

(a) Web-search

20 40 60 80
0.0

0.5

1.0

1.5

2.0

F
C
T
(N
o
rm
.
to
In
tF
lo
w
)

Load(%)

CONGA Hermes

IntFlow

(b) Data-mining

Fig. 8: Overall avg FCT in the asymmetric topology (normal-
ized to IntFlow).

V. DISCUSSION

Effectiveness of the rerouting design: Compared with
solutions based on per-packet switching, IntFlow obtains more
good rerouting opportunities by exploring traffic character-
istics with flowlet switching. And compared to pure flowlet
switching, IntFlow achieves more faster reaction to congestion,
especially when traffic is too smooth to create enough new
flowlets. Besides, IntFlow pushes congestion awareness to
network devices for path selection in load balancing to achieve
best visibility. Programmable switches give us the opportunity
to implement this mechanism. As a result, IntFlow achieves
the best performance in almost all cases in our evaluation.

Parameter settings and processing overhead in the
network: IntFlow introduces several parameters to sense
network failures/congestion to make proactive load balancing
decisions. In this paper, we provide some tuned values for
parameter settings according to previous work and our tests.
But an automatic parameter tuning procedure for the optimal
parameter settings should greatly simplify the implement of
IntFlow. We consider it as a future work. IntFlow requires
per flow forwarding state implemented by an flowlet table,
which can be feasible at low cost in leaf switches for
concurrent flowlets[12]. Recent hardware switch architectures
make it feasible to perform flexible packet processing inside
the network[26]. This allows some load balancing schemes
to be implemented in the network, such as CONGA[12],

HULA[13], MP-HULA[37]. IntFlow similarly calculates and
relays congestion information in the network.

VI. RELATED WORK

We briefly discuss related work that has informed and
inspired our design.

Some centralized mechanisms (e.g. Hedera[2], MicroTE[6]
and FastPass[38]) employ centralized schedulers to monitor
global network state and schedules large flows in multiple
paths. But they have long scheduling intervals. It is not adap-
tive to the traffic volatility of datacenter networks. These cen-
tralized mechanisms cannot meet the requirements of delay-
sensitive applications in datacenters.

Some in-network solutions (e.g. RPS[8], DRILL[10],
LetFlow[24], CONGA[12], HULA[13] and AG[11]) employ
custom switches to balance traffic. They spray the fixed
switching units, including per-packet and per-flowlet, across
available paths to make full use of link resource. They explore
traffic bursts to optimize load balancing performance. But this
kind of schemes still have some problems under the unpre-
dictable network environment in datacenters. RPS and DRILL
are prone to experience packet reordering under asymmetric
topology[5], [11]. And they also suffers from congestion mis-
match under asymmetry. Besides, performance optimization
effect of flowlet-based schemes may be less noticeable under
smoother workloads. AG adjusts the switching granularity ac-
cording to the latency-based congestion conditions of all paths
to adapt to different degrees of topology asymmetry. But it
cannot balance load based on flow status in the network, which
may cause performance issues under failed switches, such as
silent random packet drops and packet blackholes[23], [5].
Therefore, though in-network schemes are likely to provide
sufficient rerouting opportunities, it is difficult for them to
achieve adaptive load balancing according to flow status.

Many schemes performs load balancing at end hosts.
Presto[9] routes flowcells to balance load at network edge.
But Presto performs poorly with static weights under asymme-
try and suffers from congestion mismatch. CLOVE-ECN[14]
leverages per-flowlet weighted round robin at end hosts to
route flowlets, which provides ease of deployment but achieves
worse performance compared to flowlet-based schemes im-
plemented in switches. These path weights are calculated
according to ECN signals residing in ACKs. MPTCP[36]
designed as a transport protocol routes several subflows simul-
taneously over multiple paths. MPTCP creates more burstiness
and performs poorly under incast[12]. And these subflows
still use ECMP to distribute traffic, which can cause ECMP
hash collisions. Flowbender[16] reroutes flows blindly when
congestion is detected based on ECN signals of every flow
at end hosts. Without global awareness of congestion and
with a random load balancing decision Flowbender has sub-
optimal performance. Hermes[5] uses packet as the minimum
switchable granularity, which exploits ECN signals and coarse-
grained RTT measurements to sense congestion on multiple
paths. Though schemes rerouting flows at packet granularity
based on flow status can make proactive and cautious load
balancing decisions, they lose the rerouting opportunity based
on traffic bursts.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 10,2020 at 02:46:59 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.2990868, IEEE
Transactions on Network and Service Management

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Finally, all the aforementioned schemes try to solve prob-
lems from one dimension. They either passively wait for
new flowlets to rerouting flows or proactively reroute flows
at packet granularity based on flow status. IntFlow achieves
proactive and cautious load balancing by integrating per-packet
and per-flowlet switching strategy to improve performance.

VII. CONCLUSION

We propose IntFlow, a novel load balancing solution, which
combines the advantages of monitoring flow status at end hosts
and in-network congestion-aware flowlet switching. IntFlow
assesses flow status at end hosts to assist the flowlet switch-
ing at programmable switches. IntFlow reacts to congestion
timely based on flow status to achieve proactive rerouting
at end hosts, while performing cautious rerouting for flowlet
switching in the network. We evaluate IntFlow through large-
scale simulations. Experimental results show considerable
performance improvements compared to current schemes.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proceeding of the ACM SIGCOMM,
2008, pp. 63–74.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vah-
dat, “Hedera: Dynamic flow scheduling for data center networks,” in
Proceeding of the USENIX NSDI, 2010, pp. 89–92.

[3] A. Greenberg et al., “VL2: a scalable and flexible data center network,”
in Proceeding of the ACM SIGCOMM, 2009, pp. 51–62.

[4] C. Hopps, “Analysis of an equal-cost multi-path algorithm,” RFC 2992,
2000.

[5] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, “Resilient
datacenter load balancing in the wild,” in Proceeding of the ACM
SIGCOMM, 2017, pp. 253–266.

[6] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” in Proceeding of the ACM CoNEXT,
2011, p. 8.

[7] J. Cao et al., “Per-packet load-balanced, low-latency routing for clos-
based data center networks,” in Proceeding of the ACM CoNEXT, 2013,
pp. 49–60.

[8] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the impact
of packet spraying in data center networks,” in Proceeding of the IEEE
INFOCOM, 2013, pp. 2130–2138.

[9] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,” in
Proceeding of the ACM SIGCOMM, 2015, pp. 465–478.

[10] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,
“DRILL: Micro load balancing for low-latency data center networks,”
in Proceeding of the ACM SIGCOMM, 2017, pp. 225–238.

[11] J. Liu, J. Huang, W. Li, and J. Wang, “AG: Adaptive switching
granularity for load balancing with asymmetric topology in data center
network,” in Proceeding of the IEEE ICNP, 2019, pp. 1–11.

[12] M. Alizadeh et al., “CONGA: Distributed congestion-aware load bal-
ancing for datacenters,” in Proceeding of the ACM SIGCOMM, 2014,
pp. 503–514.

[13] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “HULA:
Scalable load balancing using programmable data planes,” in Proceeding
of the ACM SOSR, 2016, p. 10.

[14] N. Katta et al., “Clove: Congestion-aware load balancing at the virtual
edge,” in Proceeding of the ACM CoNEXT, 2017, pp. 323–335.

[15] S. Sinha, S. Kandula, and D. Katabi, “Harnessing TCP’s burstiness with
flowlet switching,” in Proceeding of the ACM HotNets, 2004.

[16] A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene, “FlowBender: Flow-
level adaptive routing for improved latency and throughput in datacenter
networks,” in Proceeding of the ACM CoNEXT, 2014, pp. 149–160.

[17] “Barefoot Tofino,” Accessed June 25, 2019. [Online]. Available:
https://barefootnetworks.com/.

[18] “Intel ethernet switch fm6000 series, white paper,” 2013.
[19] S. Guenender et al., “NoEncap: overlay network virtualization with no

encapsulation overheads,” in Proceeding of the ACM SOSR, 2015, p. 9.

[20] “NS3,” Accessed June 25, 2019. [Online]. Available:
https://www.nsnam.org/.

[21] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceeding of the ACM IMC, 2010, pp.
267–280.

[22] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures
in data centers: Measurement, analysis, and implications,” ACM SIG-
COMM Computer Communication Review, vol. 41, no. 4, pp. 350–361,
2011.

[23] C. Guo et al., “Pingmesh: A large-scale system for data center net-
work latency measurement and analysis,” in Proceeding of the ACM
SIGCOMM, 2015, pp. 139–152.

[24] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall, “Let it
flow: Resilient asymmetric load balancing with flowlet switching.” in
Proceeding of the USENIX NSDI, 2017, pp. 407–420.

[25] M. Alizadeh et al., “Data center tcp (dctcp),” in Proceeding of the ACM
SIGCOMM, 2010, pp. 63–74.

[26] N. K. Sharma et al., “Evaluating the power of flexible packet processing
for network resource allocation,” in Proceeding of the USENIX NSDI,
2017, pp. 67–82.

[27] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 3, p. 87–95, 2014.

[28] J. Li, E. Michael, and D. R. K. Ports, “Eris: Coordination-free consistent
transactions using in-network concurrency control,” in Proceeding of the
ACM SOSP, 2017, pp. 104–120.

[29] X. Jin et al., “NetCache: Balancing key-value stores with fast in-network
caching,” in Proceeding of the ACM SOSP, 2017, pp. 121–136.

[30] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman, X. Jin, and I. Stoica,
“DistCache: provable load balancing for large-scale storage systems with
distributed caching,” in Proceeding of the USENIX FAST, 2019, pp. 143–
157.

[31] W. Bai et al., “Information-agnostic flow scheduling for commodity data
centers.” in Proceeding of the USENIX NSDI, 2015, pp. 455–468.

[32] C. Lee, C. Park, K. Jang, S. Moon, and D. Han, “DX: Latency-
based congestion control for datacenters,” IEEE/ACM Transactions on
Networking (TON), vol. 25, no. 1, pp. 335–348, 2017.

[33] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “TIMELY: RTT-
based congestion control for the datacenter,” in Proceeding of the ACM
SIGCOMM, 2015, pp. 537–550.

[34] Q. Shi, F. Wang, D. Feng, and W. Xie, “ALB: Adaptive load balancing
based on accurate congestion feedback for asymmetric topologies,” in
Proceeding of the IEEE IWQoS, 2018, pp. 1–6.

[35] C. Kim et al., “In-band network telemetry via programmable data-
planes,” in Proceeding of the ACM SIGCOMM demo paper, 2015, pp.
42–44.

[36] C. Raiciu et al., “Improving datacenter performance and robustness with
multipath TCP,” in Proceeding of the ACM SIGCOMM, 2011, pp. 266–
277.

[37] C. H. Benet, A. J. Kassler, T. Benson, and G. Pongracz, “MP-HULA:
Multipath transport aware load balancing using programmable data
planes,” in Proceeding of the ACM SIGCOMM Workshop NetCompute,
2018, pp. 7–13.

[38] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal, “Fast-
Pass: A centralized ”zero-queue” datacenter network,” in Proceeding of
the ACM SIGCOMM, 2014, pp. 307–318.

Qingyu Shi He received the BE degree in computer
science and technology from the Huazhong Univer-
sity of Science and Technology (HUST), Wuhan,
China, in 2014. He is currently a PhD student ma-
joring in Computer Architecture in Wuhan National
Laboratory for Optoelectronics (WNLO). His cur-
rent research interests include software-defined net-
working, datacenter networks and distributed storage
systems. He has several publications in major jour-
nals and international conferences, including CN and
IWQoS.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 10,2020 at 02:46:59 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.2990868, IEEE
Transactions on Network and Service Management

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Fang Wang She received her BE degree and Master
degree in computer science in 1994, 1997, and
Ph.D. degree in computer architecture in 2001 from
Huazhong University of Science and Technology
(HUST), China. She is a professor of computer sci-
ence and engineering at HUST. Her interests include
distribute file systems, parallel I/O storage systems
and graph processing systems. She has more than 50
publications in major journals and international con-
ferences, including FGCS, ACM TACO, SCIENCE
CHINA Information Sciences, Chinese Journal of

Computers and HiPC, ICDCS, HPDC, ICPP.

Dan Feng She received the BE, ME, and PhD de-
grees in Computer Science and Technology in 1991,
1994, and 1997, respectively, from Huazhong Uni-
versity of Science and Technology (HUST), China.
She is a professor and vice dean of the School of
Computer Science and Technology, HUST. Her re-
search interests include computer architecture, mas-
sive storage systems, and parallel file systems. She
has more than 100 publications in major journals
and international conferences, including IEEE-TC,
IEEE-TPDS, ACM-TOS, JCST, FAST, USENIX

ATC, ICDCS, HPDC, SC, ICS, IPDPS, and ICPP. She serves on the program
committees of multiple international conferences, including SC 2011, 2013
and MSST 2012. She is a member of IEEE and a member of ACM.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 10,2020 at 02:46:59 UTC from IEEE Xplore. Restrictions apply.

