
Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

A congestion-aware and robust multicast protocol in SDN-based data center
networks

Tingwei Zhua, Dan Fenga,⁎, Fang Wanga, Yu Huaa, Qingyu Shia, Yanwen Xiea, Yong Wanb

a Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System (School of Computer Science and Technology, Huazhong
University of Science and Technology), Ministry of Education of China, China
b Computer Engineering College, Jingchu University of Technology, China

A R T I C L E I N F O

Keywords:
Reliable multicast protocol
Software-defined networking
Data center networks
Distributed file systems
Data replication

A B S T R A C T

Continuously enriched distributed systems in data centers generate much network traffic in push-style one-to-
many group mode, raising new requirements for multicast transport in terms of efficiency and robustness.
Existing reliable multicast solutions, which suffer from low robustness and inefficiency in either host-side
protocols or multicast routing, are not suitable for data centers. In order to address the problems of inefficiency
and low robustness, we present a sender-initiated, efficient, congestion-aware and robust reliable multicast
solution mainly for small groups in SDN-based data centers, called MCTCP. The main idea behind MCTCP is to
manage the multicast groups in a centralized manner, and reactively schedule multicast flows to active and low-
utilized links, by extending TCP as the host-side protocol and managing multicast groups in the SDN-controller.
The multicast spanning trees are calculated and adjusted according to the network status to perform a better
allocation of resources. Our experiments show that, MCTCP can dynamically bypass the congested and failing
links, achieving high efficiency and robustness. As a result, MCTCP outperforms the state-of-the-art reliable
multicast schemes. Moreover, MCTCP improves the performance of data replication in HDFS (Hadoop
Distributed File System) compared with the original and TCP-SMO (an alternative reliable multicast scheme)
based ones, e.g., achieves up to 1.5× and 1.1× improvements in terms of throughput, respectively.

1. Introduction

In recent years, with the development of cloud computing technol-
ogy, applications in data centers have been significantly enriched. A
large number of different distributed applications generate complex
network traffic of one-to-one and one-to-many patterns, causing much
pressure on data center network resources. More importantly, most of
the one-to-many group communications in data centers are implemen-
ted through multiple unicast like TCP, which is inefficient. They
generate a lot of replicated traffics, which not only waste network
resources but also decrease the performance of applications.

A large number of typical one-to-many group communication
scenarios exist in data centers, as a lot of distributed systems need to
transfer the same data from one node to others for the sake of service
reliability and performance. Distributed file systems adopt a replication
mechanism to ensure the reliability of data storage, such as HDFS
Shvachko et al. (2010) in Hadoop, Ceph Weil et al. (2006) in Red Hat
and GFS Ghemawat et al. (2003) in Google. File chunks are replicated
to several storage nodes, which are chosen by certain placement

policies. In cooperative computations, the executable binaries or
shared data are distributed to other collaborative servers, such as the
Distributed Cache in Hadoop Map Reduce (Hadoop, 2016) and
Broadcast variables in Apache Spark (2016). The queries in web search
engine are redirected to a set of indexing servers to look up the
matching documents, say Google or Bing.

These group communication scenarios in data centers have the
following key characteristics, which raise new requirements for multi-
cast solutions.

• Small groups. The group members are generally small, i.e.,
hundreds or fewer. For instance, distributed file systems mainly
adopt three replicas, and the number of the worker nodes in data
analytics applications is often from tens to hundreds Xia et al.
(2015).

• Reliability. Unlike the traditional group communication scenarios
such as IPTV, which allow data loss to some extent, most of the
group communications in data centers require strict reliability.

• Sender-initiated. Most of the group transmissions are push-style,

http://dx.doi.org/10.1016/j.jnca.2017.07.013
Received 22 January 2017; Received in revised form 19 June 2017; Accepted 26 July 2017

⁎ Corresponding author.
E-mail addresses: twzh@hust.edu.cn (T. Zhu), dfeng@hust.edu.cn (D. Feng), wangfang@hust.edu.cn (F. Wang), csyhua@hust.edu.cn (Y. Hua), qingyushi@hust.edu.cn (Q. Shi),

ywxie@hust.edu.cn (Y. Xie), wanabc@hust.edu.cn (Y. Wan).

Journal of Network and Computer Applications 95 (2017) 105–117

Available online 27 July 2017
1084-8045/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/10848045
http://www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2017.07.013
http://dx.doi.org/10.1016/j.jnca.2017.07.013
http://dx.doi.org/10.1016/j.jnca.2017.07.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2017.07.013&domain=pdf

where the sender determines the transmission, and the receivers do
not know when and where to receive data in advance.

• Efficiency. Compared with the Internet environment, the DCN
(Data Center Network) has the salient features of high bandwidth
and low latency features and the applications in data centers are
more performance sensitive and critical. Therefore, multicast
schemes need to make full use of the benefits of DCN to achieve
high efficiency. Moreover, due to the burst Benson et al. (2010) and
mixed nature of network traffic in data centers, congestion-aware-
ness is very important in achieving efficient multicast routing.

• Robustness. A link failure may cause transmission pause in
multiple receivers, and therefore, robust is important in multicast.

Previous reliable multicast solutions fail to meet all the require-
ments in aforementioned small groups multicast scenarios, mainly for
the following reasons. First, the majority of previous reliable multicast
solutions are receiver-initiated application-layer protocols (based on
UDP), which suffer from high software overhead on end hosts and
mismatch to the sender-initiated mode. In this paper, we define the
“sender-initiated” to be “the sender specifies the receivers in a multi-
cast session, and the receivers do not need to know the multicast group
address and join the group in advance”. On the contrary, the “receiver-
initiated” is “the receivers need to obtain the multicast group address
and join the group in advance, and the sender does not need to know
about the receivers’ information”. Second, traditional IP multicast
routing algorithms, such as PIM-SM Estrin et al. (1997), are not
designed to build optimal routing trees. They are not aware of link
congestion, and thus apt to cause significant performance degradation
in burst and unpredictable traffic environment Benson et al. (2010).
Third, traditional multicast group management protocols, such as
Internet Group Management Protocol (IGMP) Cain et al. (2015), fail
to be aware of link failures. A failure in multicast spanning trees can
suspend transmission and lead to significant performance loss or
business interruption.

The emergence of SDN (Software-Defined Networking) McKeown
et al. (2008), brings new ideas for solving routing efficiency issues of
reliable multicast in data centers. A centralized control plane called
SDN-controller provides global visibility of the network, rather than
localized switch level visibility in traditional IP networks. Therefore,
multicast routing algorithms can leverage topology information and
link utilization to build optimal (near-optimal) routing trees, and be
robust against link congestion and failures.

To meet all the aforementioned requirements, we develop an SDN-
based sender-initiated, efficient, congestion-aware and robust reliable
multicast solution, called MCTCP, which is mainly designed for small
groups. The main idea behind MCTCP is to manage the multicast
groups in a centralized manner, and reactively schedule multicast flows
to active and low-utilized links. Therefore, the multicast routing can be
efficient and robust. To eliminate the high overhead on end hosts and
achieve reliability, we extend TCP as the host-side protocol, which is a
transport-layer protocol.

Specifically, MCTCP consists of two modules, including the HSP
(Host-Side Protocol) and the MGM (Multicast Group Manager). The
HSP is a sender-initiated protocol, where the sender defines the
transmission and the receivers need not to know the multicast address
or subscribe it in advance. By notifying the MGM each time establish-
ing or closing a session, it is easy for the MGM to keep states of all the
sessions. Therefore, the MGM can calculate and adjust Multicast
Spanning Trees (MSTs) for each session based on real-time link status
to achieve congestion-aware and robustness.

As for the access bottleneck and single point failure problems which
centralized approaches may suffer from, we have two considerations.
First, the availability of the SDN-controller is out of the scope of this
paper, and we can use multiple controllers to relieve these problems.
Second, we can significantly relieve the pressure of the SDN-controller
by keeping long term connections when using MCTCP, which is feasible

in most of the bandwidth-hungry applications such as HDFS.
Our design goal is to make MCTCP as flexible and convenient as

TCP, efficient and robust for one-to-many small group communica-
tions, even in burst and unpredictable traffic environments. To verify
the applicability of MCTCP, we also implement multicast-based HDFS,
which is a version of HDFS using MCTCP for data replication.

This paper makes the following contributions.

• We propose MCTCP, a transport-layer reliable multicast transmis-
sion scheme mainly for small groups in SDN-based data centers,
which is efficient on both host-side protocol and multicast routing.
We design a centralized Multicast Group Manager (MGM) to ensure
multicast routing efficiency and robustness by reactively scheduling
multicast flows. Therefore, the MSTs can dynamically bypass the
congested and failing links, making MCTCP more suitable for the
unpredictable network environment.

• We implement MCTCP in real systems. Experimental results con-
firm its functionality of congestion-awareness and failure-resistance.
Experiments under background traffic in patterns of two realistic
workloads, including the web search Alizadeh et al. (2010) and the
data mining Greenberg et al. (2009), demonstrate that MCTCP
outperforms the state-of-the-art reliable multicast schemes in
transmission bandwidth.

• We implement the multicast version of HDFS using MCTCP and
TCP-SMO Liang and Cheriton (2002), called HDFS-M and HDFS-T,
respectively to improve performance of data replication. Compared
with HDFS-O (the original pipeline-based HDFS version) and
HDFS-T, HDFS-M decreases the per-packet latency by
∼50% − 72% and ∼10% − 45%, and improves the throughput by
∼50% − 1.6× and ∼20% − 1.3×, respectively under web search back-
ground traffic.

Some preliminary results of this paper were published in the
Proceedings of the IEEE/ACM International Symposium on Quality
of Service (IWQoS, 2016) Zhu et al. (2016). In this paper, we improve
the MST calculation and adjustment algorithm, i.e., Shortest Widest
Path (SWP) based algorithm, and extend the evaluations in a new data
center network topology, i.e., Leaf-Spine topology.

The rest of paper is organized as follows. Section 2 presents the
motivation and related work of this paper. Section 3 presents the
design of MCTCP. Section 4 describes the implementation details.
Section 5 describes our experimental evaluation of MCTCP and the
performance comparisons among the state-of-the-art approaches.
Finally, we draw conclusion in Section 6.

2. Motivations and related work

2.1. Motivations

A large number of small group mode communications exist in DCN,
which are widely presented in distributed systems. These small group
communications carry a large amount of data, raising new challenges
for reliable multicast schemes.

Applicability and flexibility: Many group communications are
generated in distributed systems during runtime. For each group
communication, the sender knows the information of all receivers,
while the receivers are not aware of the sender until the communication
starts. For example, in distributed storage systems, the clients are
active transmitters and the data nodes are passive receivers during data
replication. Therefore, in these scenarios, the sender-initiated multicast
schemes have better applicability and flexibility than the receiver-
initiated schemes. But most conventional multicast schemes are
receiver-initiated, which are not suitable for these scenarios.

Efficiency: High efficiency is required in data center networks. But
existing reliable multicast schemes cannot meet the efficiency require-
ments for most of the applications for two reasons. First, the software

T. Zhu et al. Journal of Network and Computer Applications 95 (2017) 105–117

106

overhead on host side protocols of multicast becomes prominent in the
high bandwidth, low latency network environment of data centers. The
majority of existing reliable multicast solutions are application-layer
schemes, which are UDP-based and implemented in user space, thus
resulting in poor efficiency. Second, current data centers are built with
high link density, and the network traffic is bursty and unpredictable
Benson et al. (2010). Since existing reliable multicast schemes are
based on distributed routing algorithms, which cannot make full use of
network resources to achieve optimal routing efficiency, they are
extremely vulnerable to network congestion, and easy to cause
significant performance degradation.

Robustness: With the increasing size of data centers, failures
frequently occur Greenberg et al. (2009); Li et al. (2011). Traditional
multicast management protocols are not aware of link failures, which
generally consume 10–60 s (depending on the query interval) to detect.
Any link failure in multicast trees can lead to significant performance loss.

To address the challenges above, we design MCTCP to achieve
straightforward deployment, reliability, efficiency and TCP-friendliness
by extending TCP as the host-side protocol. By leveraging the cen-
tralized control and global view of SDN, MCTCP can calculate and
adjust the MST of each group based on the real-time link status to
achieve efficient routing and robustness.

2.2. Related work

Reliable multicast: As a traditional network technology, reliable
multicast has been studied for decades, during which a large number of
reliable multicast solutions have been proposed. These proposals can
be divided into two categories, the receiver-initiated and the sender-
initiated.

Most of the previous reliable multicast solutions are receiver-
initiated. In this mode, each receiver needs to obtain the correct
multicast address in advance, and subscribes or unsubscribes it freely,
like typical researches PGM Speakman et al. (2001); openpgm (2016);
Rizzo (2000), ARM Lehman et al. (1998), NORM Adamson et al.
(2009), TCP-SMO Liang and Cheriton (2002), SRM Floyd et al. (1997),
RMTP Paul et al. (1997), TMTP Yavatkar et al. (1995), RDCM Li et al.
(2011) etc. The receiver-initiated mode is more suitable for large group
scenes. The sender does not maintain information for any receivers,
and thus throughput of the reliable multicast will not reduce badly as
the number of receivers increases. On the contrary, the sender-initiated
mode is mainly designed for medium or small group scenes, typical
including M/TCP Visoottiviseth et al. (2001), SCE Talpade and Ammar
(1995), TCP-XM Jeacle and Crowcroft (2005) and so on.

Most of the existing reliable multicast solutions are application-
layer protocols, like PGM and NORM, which suffer from high software
overhead on end hosts in the high bandwidth, low latency network
environment of data centers. RDCM Li et al. (2011) focuses on reliable
multicast in data centers, leveraging the rich path diversity available in
data center networks to build backup overlays, and recovers lost
packets in a peer-to-peer way among receivers. TCP-SMO and SCE
are transport-layer protocols, which have high performance on end
hosts like MCTCP. But they are based on traditional multicast manage-
ment protocols and routing algorithms like IGMP and PIM-SM, which
are not aware of link failures and congestion, leading to low routing
efficiency and robustness. M/TCP is network-equipment protocol,
which requires assistance from network devices. Blast Xia et al.
(2015) focuses on accelerating high-performance data analytics appli-
cations by optical multicast. Kim et al. (2014) focus on scheduling
multicast traffic with deadlines. As far as we are aware, all the existing
reliable multicast schemes are not congestion-aware. Table 1 sum-
marizes reliable multicast approaches similar to MCTCP.

SDN-based multicast: SDN technology provides a logically
centralized approach to achieve IP multicast. Avalanche Iyer et al.
(2014) and OFM Yang et al. (2012) propose SDN-based multicast
system, using the SDN-controller for multicast routing and manage-

ment to improve efficiency and security. Similarly, CastFlow
Marcondes et al. (2012) calculates all possible routes from sources to
group members in advance to speed up the processing of events in
multicast groups. Ge et al. (2013) propose an OpenFlow-based
dynamic MST algorithm to optimize the performance of multicast
transmissions, enabling adjustable multicast routing when source and
group members are unchanged. Shen et al. (2015) propose an
approximate algorithm, called Recover Aware Edge Reduction
Algorithm (RAERA) to achieve a new reliable multicast tree for SDN,
named Recover-aware Steiner Tree (RST).

However, all of the SDN-based multicast researches are focused on
multicast routing only, but not concerning about the multicast protocol
design. Moreover, they are not congestion-aware.

3. MCTCP design

MCTCP consists of two modules, i.e., the HSP (Host-Side Protocol)
and the MGM (Multicast Group Manager). The HSP is an extension of
TCP, leveraging the three-way handshake connection mechanism,
cumulative acknowledge mechanism, data retransmission mechanism
and congestion control mechanism to achieve reliable multipoint data
delivery. The MGM, located in the SDN-controller, is responsible for
calculating, adjusting and maintaining the MSTs for each multicast
session. It keeps monitoring the network status (e.g. link congestion
and link failures) and creates maximal possibility for MCTCP to avoid
network congestion and to be robust against link failures.

The schematic of MCTCP is shown in Fig. 1. The sender establishes
connection with multiple receivers explicitly before data transmission.
First, the sender requests to the MGM for calculating the MST. Second,
the MGM calculates and installs the MST. Third, the sender starts
three-way handshake with receivers, and begins data transmission
after that. Fourth, the MGM will adjust the MST once link congestion
or failures are detected. Fifth, the sender notifies the MGM after data
transmission finishes.

Table 1
Comparison of reliable multicast approaches. ‘CA’ represents Congestion-Awareness.

Approaches Initial Model Layer CA Robustness

PGM Speakman et al. (2001) Receiver Application No Low
NORM Adamson et al. (2009) Receiver Application No Low
TCP-SMO Liang and Cheriton

(2002)
Receiver Transport No Low

RDCM Li et al. (2011) Receiver Application No High
SCE Talpade and Ammar

(1995)
Sender Transport No Low

TCP-XM Jeacle and Crowcroft
(2005)

Sender Application No Low

MCTCP Sender Transport Yes High

Fig. 1. Illustration of MCTCP.

T. Zhu et al. Journal of Network and Computer Applications 95 (2017) 105–117

107

3.1. Host-side protocol

3.1.1. Session establishment
The sender requests to MGM for calculating MST when establishing

a new session. Since the receivers do not obtain the multicast address
in advance, the first handshake must be realized by using unicast
address. We put the multicast address in the SYN packet (in the TCP
options field). After receiving the SYN packet, the receivers get the
specific multicast address, and join the group (just put the multicast
address into the interested list, but not send IGMP messages), so that
they can receive the multicast messages.

There are two alternative schemes, the out-band and the in-band
schemes. For the out-band scheme, the sender requests to the MGM
before three-way handshake. After calculating the MST, the MGM
notifies the sender to start three-way handshake. For the in-band
scheme, the SYN packet is reused to request MST for calculation, and
redirected to the MGM. After receiving the SYN packet and calculating
MST, the MGM dispatches the SYN packet to all the receivers in
unicast. Fig. 2 illustrates the procedure of connection establishment.

The out-band scheme suffers from time overhead of an extra RTT to
controller. Hence, this scheme is suitable for the large amount data
transmission scenes, in which the overhead of session establishment is
negligible. The in-band scheme has no extra time overhead, but brings
much pressure on the SDN controller. This scheme is more suitable for
extremely small membership and delay-sensitive scenes.

3.1.2. Data transmission
When a session is established, data transmission begins.
Packet acknowledgement. The sender maintains a sliding

window and processes the acknowledgement from receivers. The send
window advancement is decided by the slowest receiver. As MCTCP is
mainly designed for small group scenarios, the ACK-implosion problem
existed in traditional large member reliable multicast could be ignored.

Packet retransmission. The sender manages a timer for each
session, and will retransmit the packets in multicast if the timer expires
or packets loss is detected. Since the efficient and robust multicast
forwarding achieved by MGM can significantly reduce the packet loss,
the emergence of retransmission in MCTCP will be largely decreased.

Congestion control. We use existing congestion mechanisms in
TCP directly, so that we can make full use of the existing rich and mature
congestion algorithms, evolving along with TCP. Since the send window
advancement is decided by the slowest receiver, the congestion status of
the whole session will be determined by the most congested receivers.

Node failure. If no acknowledgement is received from a certain
receiver in a threshold time during data transmission, we consider the

receiver fails. The failing receiver, which may encounter crash or
network failure, should be cleaned out from the multicast session in
order to ensure the transmission of the rest receivers. Therefore, the
applications should be responsible for fault recovery.

3.1.3. Session close
After data transmission is completed, the sender closes the multi-

cast session initiatively, and then notifies the MGM.

3.2. Multicast group manager

MCTCP uses a logically centralized approach to manage multicast
groups. The MGM located in SDN controller manages the multicast
sessions and MSTs. By keeping the global view of the network topology
and monitoring the link status in real-time, the MGM can adjust the
MSTs in case of link congestion or failures. Specifically, the MGM
consists of three sub-modules, including the session manager, the link
monitor and the routing manager, as shown in Fig. 3.

3.2.1. Session manager
The session manager is responsible for maintaining the states of all

groups. When establishing or closing a multicast session, the sender
informs the session manager. Hence, the session manager can keep
track of all the active multicast sessions. If a multicast session is closed,
the MST will not be cleared immediately, but just be marked inactive.
Therefore, a session with the same sender and receivers can reuse the
MST. The session manager periodically cleans up the inactive MSTs.

Fig. 2. The Procedure of MCTCP Session Establishment with three receivers.

Fig. 3. The Multicast Group Manager.

T. Zhu et al. Journal of Network and Computer Applications 95 (2017) 105–117

108

3.2.2. Link monitor
Link Monitor is responsible for monitoring network link status, and

estimating the weight of each link periodically.
The primary challenge here is to estimate the weight of each link at

low overhead. We focus on the full-duplex network where all the links
have the same bandwidth B. Assume we measure M bytes transferred
over a link within interval tΔ , and then the measured traffic rate R is
M t/Δ , and the measured weight is W R B= /m . If W < 1m , it means the
traffic rate has not reached the link capacity. In this case, the measured
rate indicates the real load of the link, and the weight W= m. If W = 1m , it
means the traffic rate reaches the roof of the link, but the real load may
be heavier than the measured one. We observe that when the rate
reaches the link capacity, more flows could incur heavier load.
Therefore, in this case, we need to estimate the link weight based on
the number of flows. To this end, we introduce a parameter F, which
represents the rate of a single flow. Hence, n flows can reach the
maximum traffic rate n F· without the limitation of link capacity, and
the corresponding weight n F B= · / . In practice, the measured rate R
may not reach the link capacity B precisely, but can only be approx-
imate to B. Suppose R α B= · , if α is larger than a threshold η, such as
95%, we consider it has been reaching the link capacity. We summarize
the equation for weight calculation as follow.

⎧⎨⎩weight
R B R η B

n F B R η B
=

/ < ·
max(1, · /) ≥ · (1)

As Eq. (1) shows, we need to measure the per-link rate R, the flow
number of each link n and the single flow rate F in the network. To
measure R, we simply poll the port status of all the switches, such as
using the ‘get_port_stats’ function in OpenFlow. To measure n, we
keep the state of all the flows, by recording a flow when initiated and
removing it when finished. We can prevent polling the flow tables from
switches by enabling the ‘Flow Removed’ message when a flow expires
in the OpenFlow-based SDN networking. The F actually means how
much load a single flow can introduce. It is a network parameter which
can be configured statically based on experience or can be easily
estimated during runtime. By default, the F B= 0.4· .

3.2.3. Routing manager
The routing manager is responsible for calculating and adjusting

MSTs. When establishing a new multicast session, the routing manager
calculates the minimum cost MST based on the current link utilization.
When a link overloads or a failure occurs, the adjustment for all MSTs
over the link will be triggered. We divide the routing manager into two
parts, the routing calculation and the routing adjustment. The MST
should be calculated quickly during session establishment. In the case
of link congestion, the MST should be adjusted in the best-effort way.
When the link fails, all the relevant MSTs should be updated quickly.

Routing calculation. The members of a group are assigned by
the sender, and no dynamically join/leave is allowed in MCTCP once
the session begins. The routing calculation consists of two steps: all-
pair shortest paths calculation and MST calculation. We first calculate
the all-pair shortest paths, which are called GSP (Global Shortest
Paths) and then calculate the MSTs using the GSP.

(1) Shortest Path (SP) based algorithm. By default, we use the
Shortest Path (SP) algorithms (such as Dijkstra, 1959 and Floyd
Warshall Floyd, 1962 algorithm) for GSP calculation. The shortest
path means the least cost path whose sum weight is the smallest. After
calculating the GSP, we calculate the minimum cost MST using the
minimum-cost path heuristic algorithm (MPH) Takahashi and
Matsuyama (1980). The MPH algorithm inputs a set of sender/receiver
nodes and all-pair shortest paths, and outputs a minimum cost MST.

(2) Shortest Widest Path (SWP) based algorithm. However, in
many cases, the applications of MCTCP are bandwidth hungry. The SP-
based algorithm for MST calculation is not the best solution, as it does
not consider the effect of the bottleneck paths. In MCTCP, the

throughput of a multicast group is decided by the slowest receiver.
Therefore, any bottleneck link in the MST can reduce the throughput of
the group significantly. To avoid or mitigate the impact of the bottle-
neck links, we use the Shortest Widest Path (SWP) Wang and
Crowcroft (1996) based algorithm to calculate the MSTs.

First, we use the SWP algorithm for GSP calculation. Given any two
nodes i and j, and two constraints Ba and Da, the goal of the SWP
algorithm is to find a path between i and j whose available bandwidth is
no less than Ba and the path length is no more than Da. The basic idea
of SWP algorithm is to eliminate any links with an available bandwidth
less than Ba and then find the shortest path of the rest of the network.

To maximize the bandwidth of each multicast group, the optimal
solution is to find the widest paths for each MST. However, it is costly
to calculate the widest MST for each group. To reduce the overhead of
routing calculation, we calculate the GSP only once in each adjustment
cycle, during which multiple MSTs of different multicast groups may be
calculated using the same GSP. Therefore, we do not try to find the
widest paths for each group. Instead, our goal is to avoid the bottleneck
links and find the wider paths for each pairs in best-effort way, so that
we can find the wider MSTs to improve the throughput of the
corresponding multicast groups.

To use SWP algorithm for GSP calculation, the primary challenge is
to determine the minimum available bandwidth Ba. Since our goal is to
improve the throughput of the multicast groups, the bottleneck links
are determined by the current throughput of the existing groups. First,
the Ba should be no less than a fixed threshold B η B= ·a (e.g. η = 0.1), so
that the heavy load links will not be selected. Second, the Ba should be
no less than the average transmission bandwidth of all the current
active multicast groups, thus ensuring sufficient space to adjust MSTs
for throughput enhancement. As a result, the B η B B= max(· ,)a i , where
B is the link capacity and Bi is the throughput of group i.

Different with the original SWP algorithm, we try to decrease the
possibility of choosing the bottleneck links in the GSP calculation, but not
to meet the available bandwidth constraints. Therefore, we do not
eliminate the links with an available bandwidth less than Ba. Instead,
the weight of the links whose available bandwidth is less then Ba will be
multiplied by 10. Then we use the shortest path algorithm to calculate the
GSP. With a weight far larger than the others, the bottleneck links will not
be chosen preferentially. The MPH algorithm preferentially chooses the
minimum distance path in each iteration, which fails to find the widest
path. We modify the MPH algorithm to choose the widest path in each
iteration. If there are multiple paths with the same width (minimum
residual bandwidth of all links on the path), the shortest path will be
chosen. The modified MPH algorithm is called Widest MPH (WMPH).

Routing adjustment. When the link monitor detects link over-
loads, i.e., the link weight is larger than a preset threshold, the routing
adjustment will be triggered. In routing adjustment, the GSP will be
recalculated, and the relevant MSTs will be recalculated using the GSP.

(1) Shortest Path (SP) based algorithm. For the SP based algo-
rithm, we compare the total cost of the newly calculated MST with the
current one to decide whether to install the new MST. Suppose we have
updated the group G1 to the new MST. Then G1 will generate new load
on the new links in the new MST. Therefore, we should update the
weight of the new links. We add the load generated by G1 to the new
links, i.e., an addition of B B/1 to each link, where B1 is the throughput
of G1. If the reduction of the total cost between the new MST and the
current one is no less than a reduction threshold, we think it is worth
updating, and the new MST will be installed to switches. Specifically,
consider an MST M V L(,), where V and L denote the set of nodes and
links, respectively. Each link l L∈ is associated with a weight w(l). Let
C denotes the cost of an MST, which is the sum of all link weights in the
MST, and Cthr denotes the reduction threshold. For the current MST
M V L(,)cur cur , the cost C w l= ∑ ()cur

l L∈ cur . For the new MST M V L(,)new new ,

the cost C w l w l B B= ∑ () + ∑ (() + /)new
l L L l L L∈ ∩ ∈ −

1
new cur new cur . If

C C C− ≥cur new thr , the new MST will be installed. By default, we let
the C B B= /thr 1 .

T. Zhu et al. Journal of Network and Computer Applications 95 (2017) 105–117

109

(2) Shortest Widest Path (SWP) based algorithm. For the SWP
based algorithm, we do not use the total weight of a MST to determine
whether to update the MST. If the available bandwidth of the new MST
Bn is larger than the current throughput of G1 B1, i.e.,
B B α α> ·(1 +)(> 0)n 1 , the new MST will be installed. This ensures that
the new MST has enough free bandwidth for throughput improvement
of the group G1. By default, α = 0.3, and we can adjust the α according
to the network states.

To reduce the overhead of routing adjustment, we calculate the GSP
only once during each adjustment cycle. Here we consider the situation
where there are multiple groups need to be adjusted. When the MST of
a group has been adjusted, the weight of the associated links will
change. Therefore, we need to adjust the weight of the changing links.
For example, the links set of a group G1's MST is L l l l: { , , }cur 1 2 3 before
adjustment, and are changed to L l l l: { , , }new 1 3 4 after adjustment. Then
the traffic which on link l2 will switch to link l4, and the weight of l2 and
l4 will change. We correct the weight of l2 and l4 by w l w l B B() = () − /2 2 1 ,
and w l w l B B() = () + /4 4 1 , respectively. As a result, other groups which
wish to adjust their MST to l2 or l4 could take the effect of group G1 into
account.

To improve the overall performance, when multiple groups need to
be adjusted, the group with heavier traffic load is adjusted first.
Specifically, we first sort the multicast groups by their transmission
rates within the adjustment interval, and then adjust the multicast
group with lower transmission rate first. The routing adjustment
algorithm does not guarantee that the placement is optimal, but it
performs relatively well in practice as shown in Section 5. The
pseudocode of Routing Adjustment is shown in Algorithm 1 and 2.

Algorithm 1. Multicast routing adjustment.

1: // Update the link weight, and find out the overloaded links
2: for l in Lall do
3: l weight l rate B l rate B l flownum F B. = . < ? . / : . · / ;
4: if l weight W. > thr then
5: C append l. (); // Store the overloaded links in C
6: end if
7: end for
8: Sort the groups according their transmission rates in

ascending order, get G;
9: for g in G do
10: if g link. in C then
11: n g newMst= . (); // Calculate the new MST
12: // Check whether to update
13: if checkMst n L g L(. , .) then
14: B// g is the throughput of g

15: for l in {n L. - g L. } do
16: l weight B B. += / ;g

17: end for
18: for l in {g L. - n L. } do
19: l weight B B. − = / ;g

20: end for
21: g update. (); // Update the MST
22: end if
23: end if
24: end for

Algorithm 2. checkMST(Lnew, Lcur).

1: // Calculate the Lcur

2: for l in Lcur do
3: C l weight+= . ;cur

4: end for
5: // Calculate the Lnew

6: for l in {L L∩cur new} do

7: C l weight+= . ;new

8: end for
9: for l in {L L−new cur} do
10: C l weight B B+= . + / ;new g

11: end for
12: if C C C− ≥cur new thr then
13: return TRUE;
14: end if
15: return FALSE;

Routing examples. The following example compares the results
of two routing algorithms (SP and SWP) in MST calculation. As shown
in the Fig. 4, the load of each link is marked on the link, and the
capacity of each is Mbps10 . When using the SP algorithm, the path with
minimum sum load will be chosen. Therefore, the path S S S1 → 5 → 2,
S S S1 → 5 → 3, S S S1 → 5 → 4 are the shortest paths from S1 to S2, S3,
S4, respectively. The MST for a group G H H H H1: 1 → { 2, 3, 4} will be
S S S S S S S S{ 1 → 5, 5 → 2, 5 → 3, 5 → 4} and the available bandwidth
for G1 is Mbps2 . When using the SWP algorithm, the load of the
bottleneck links (with load larger than 6) will multiply by 10, and then
the path with minimum sum load will be chosen. As a result, the path
S S S1 → 6 → 2, S S S1 → 6 → 3, S S S1 → 6 → 4 are the shortest paths
from S1 to S2, S3, S4, respectively. The MST for a group G1 will be
S S S S S S S S{ 1 → 6, 6 → 2, 6 → 3, 6 → 4} and the available bandwidth
for G1 is Mbps5 .

Another example compares the MPH algorithm with the WMPH
algorithm as shown in the Fig. 5. Assume the capacity of each link is

Mbps10 and the minimum available bandwidth B Mbps= 4a in SWP
algorithm. The SWP algorithm calculates the paths from S1 to S2, S3,
S4 to be S S1 → 2, S S1 → 3, S S S1 → 2 → 4, with distance and minimum
available bandwidth (3, 7), (5, 5) and (6, 7), respectively. After calculat-
ing the GSP using the SWP algorithm, the MPH calculates the
minimum cost MST based on the shortest distance. As a result, MPH
calculates the MST for G H H H2: 1 → { 2, 3} to be
MST S S S S1: { 1 → 3, 3 → 4}. However, WMPH will preferentially select
the widest path in each iteration, so that the MST for G2 will be
MST S S S S S2: { 1 → 2 → 4, 4 → 3}. Compare to MST1, the minimum
available bandwidth of MST2 is larger, i.e., Mbps7 to Mbps5 .

4. Implementation details

We implement MCTCP on a Linux platform, the HSP as a kernel-
level module, and the MGM as an application on Ryu (2016), a popular
open source SDN controller. In order to achieve straightforward
deployment, the HSP adopts the same semantics as TCP, and provides
common socket APIs. Therefore, the application programmers can use
MCTCP as easy as TCP in programming. To verify the applicability of
MCTCP, we apply MCTCP on HDFS to optimize the data replication
mechanism.

4.1. Prototype implementation

We add a new transport-layer protocol by assigning a new protocol
number (e.g. 106) to MCTCP when implementing the HSP prototype,
in order to avoid modification in the kernel source code. Therefore, the
HSP works as a kernel module which can be loaded and unloaded as
needed. We implement the MGM module on Ryu. The MGM only
processes the MCTCP traffic (e.g. with protocol number 106), and a
general routing module processes the non-MCTCP traffic. For the
MCTCP traffic, we use the load-based algorithm for routing calculation,
always seeking for minimum cost, since we can adjust the MSTs if the
load changes. For the non-MCTCP traffic, we use the distance-based
algorithm, and the routing will not change unless link fails.

T. Zhu et al. Journal of Network and Computer Applications 95 (2017) 105–117

110

4.2. Application integration

HDFS is one of the most widely deployed distributed file system in data
centers, which acts as the default file system in Hadoop. Its data replication
process is a typical one-to-many data transmission, during which the client
gets the list of DNs (Data Nodes) from an NN (Name Node), and then
delivers the data chunks to them. By default, the replication factor in
HDFS is three, so we assume the replication factor is three.

As shown in Fig. 6(a), the original HDFS employs a pipeline-based
replication method. The data transmission unit is a packet (usually
64KB). For each packet, the client first transfers it to DN0; then the
DN0 stores and passes it to DN1; finally the DN1 stores and transfers it
to DN2. After the DN2 receives the packet, it returns an acknowl-
edgment to DN1; then the DN1 returns an acknowledgment to DN0;
finally the DN0 returns an acknowledgment to the Client. Therefore,
the whole process can be regarded as a six-stage pipeline. We denote
the original HDFS as HDFS-O. HDFS-O has n2· stages when configured
as n replicas, resulting in long delay in packet transmission. In
addition, HDFS-O delivers data in unicast, which will generate a large

number of duplicated packets into the network and reduce the overall
transmission performance.

We implement multicast-based data replication on HDFS using
MCTCP, which is denoted as HDFS-M. As shown in Fig. 6(b), the client
divides the data into packets, and then delivers them to three data
nodes DN0, DN1, DN2 in multicast. For each packet, the client
transfers it to DN0, DN1, DN2 simultaneously using MCTCP, and then
all the data nodes return acknowledgements to the client directly.
Therefore, HDFS-M's data replication procedure can be regarded as a
two-stage pipeline. Compared with HDFS-O, HDFS-M has shorter
stages (two stages to six stages), so that results in lower latency.
Meanwhile, since HDFS-M delivers data in multicast, the redundant
packets in network are reduced greatly.

In the similar way, we implement another multicast-based HDFS
using TCP-SMO, which is the state-of-the-art transport-layer reliable
multicast scheme, called HDFS-T. Since TCP-SMO is a receiver-initiated
solution, we have to use additional mechanism to inform a DN to
subscribe a specific multicast group before writing data to the DN.

5. Evaluation

We build a test platform on Mininet Handigol et al. (2012). The
hardware consists of one server running Ubuntu 12.04.5 LTS operating
system, with Intel (R) Xeon (R) E5-2620 @ 2.00 GHz CPU, 32 GB
RAM. We install Mininet 2.2.0 and Openvswitch 2.1.0, RYU 3.17 on it.
We use two representative data center network topologies (i.e. Fat-Tree
Al-Fares et al., 2008 and Leaf-Spine topology Alizadeh and Edsall,
2013) in our evaluation. For the Fat-Tree topology, there are 4 pods (k
= 4), containing twenty 4-port switches and 16 hosts, as shown in
Fig. 7. For the Leaf-Spine topology, there are 4 spine switches and 8
leaf switches, and each leaf switch contains 4 hosts, as shown in Fig. 8.
Two MCTCP versions are implemented in our evaluation, including
MCTCP-S and MCTCP-W which are based on SP (Shortest Path)
algorithm and SWP (Shortest Widest Path) algorithm respectively.

Fig. 5. An example of the comparison between MPH algorithm and WMPH algorithm.

Fig. 6. Illustration of Pipeline-based and Multicast-based data replication.

Fig. 4. An example of the comparison between SP-based algorithm and SWP-based algorithm.

T. Zhu et al. Journal of Network and Computer Applications 95 (2017) 105–117

111

We perform three evaluations, including the basic evaluation, the
real-word workload evaluation and the application-based evaluation,
and we also discuss the complexity of the Controller.

Basic evaluation: We compare the performance of NORM
Adamson et al. (2009), openPGM openpgm (2016), TCP-SMO Liang
and Cheriton (2002) and MCTCP, and verify the congestion-awareness,
robustness and TCP-friendliness of MCTCP. NORM and openPGM (an
implementation of PGM) are two popular open-source application-
layer reliable multicast schemes, and TCP-SMO is a transport-layer
reliable multicast scheme. Here we only make a comparison among the
comprehensive reliable multicast schemes (all the previous SDN-based
schemes are focused on routing strategies).

Real-world workload evaluation: We evaluate the perfor-
mance of TCP-SMO, MCTCP-S and MCTCP-W under background
traffic in the patterns of two realistic workloads, the web search
workload Alizadeh et al. (2010) and the data mining workload
Greenberg et al. (2009) from production data centers.

Application-based evaluation: We evaluate the performance of
HDFS-O, HDFS-T and HDFS-M under the background traffic in the
patterns of web search workload.

Complexity of the controller: We discuss the capability of the
SDN controller, such as the running time of the algorithm, computa-
tion and network overhead of the controller.

5.1. Basic evaluation

The purpose of the basic evaluation is to evaluate the performance
of MCTCP, and to see the behavior in case of link congestion and link
failures, how MCTCP performs when co-existing with standard TCP.

First, we evaluate the throughput of NORM, openPGM, TCP-SMO
and MCTCP, with the congestion control enabled, transmission rate at
500 Mbps. In this test, we use the first four nodes in Fig. 7, the node H1
sends data to the rest three nodes. At time 20 s, we start a TCP flow
using iperf and make it conflict with the MST of the multicast group to
simulate congestion. The iperf lasts 15 s Fig. 9 depicts the throughput
of the four schemes. We have the following observations:

When no link congestion occurs (during time 0–20 s and 35–60 s),
MCTCP achieves 60% and 22% better performance than NORM and
openPGM, and is analogous to TCP-SMO. When link congestion occurs
(during time 20–35 s), MCTCP exhibits nearly no throughput degrada-
tion, while NORM, openPGM and TCP-SMO suffer from throughput
degradation by 17%, 17% and 33%, respectively. That means MCTCP

achieves up to 90%, 44% and 45% better performance than NORM,
openPGM and TCP-SMO, respectively when congestion happens.

MCTCP outperforms the alternative schemes mainly because of two
reasons. First, MCTCP is a transport-layer protocol, which can process
data transmission, packet acknowledgement and data re-transmission
more efficiently than the application-layer protocol. Therefore, MCTCP
outperforms NORM and openPGM even in no link congestion scenes.
Second, MCTCP can detect link congestion in real-time, and adjust the
MST to bypass congested links immediately once the link congestion is
detected. Therefore, when link congestion occurs, MCTCP updates the
MST to minimize performance loss. In the alternative schemes,
however, once established, the MSTs are scarcely changed, leading to
significant performance degradation when congestion occurs.

Second, we evaluate the results of MCTCP when dealing with link
failures and sharing links with TCP. The three alternative schemes are
based on IGMP, so they leverage the mechanisms of IGMP to deal with
link failures. For IGMP, a querier is responsible for sending out IGMP
group membership queries on a timed interval to retrieve IGMP
membership reports from active members, and to allow updating of
the group membership tables. Hence, the MSTs will not be updated
during the query interval even if a link failure occurs. The link failure
recovery time of NORM, openPGM and TCP-SMO depends on the
query interval, which is typically 10–60 s. Therefore, we do not
evaluate the results of the three alternative schemes in dealing with
link failures.

Like the previous experiment, we observe that the MST is
S S S S{ 11 → 21, 21 → 12} after the transmission begins. At time 20 s,
we shutdown the link of S S11 → 21, and then start a TCP flow
between H2 and H3 using iperf during time 44–74 s. TCP and
MCTCP both run “reno” congestion control algorithm. Fig. 10 depicts
the results in this experiment. We have the following observations
from this figure. First, the link failure has only a slight impact on

Fig. 7. Fat-Tree topology used in evaluation.

Fig. 8. Leaf-Spine topology used in evaluation.

Fig. 9. Throughput comparison among NORM, openPGM, TCP-SMO and MCTCP. From
20–35 s, a TCP flow is injected using iperf. The TCP-N, TCP-P, TCP-T and TCP-M
indicate the injected TCP flow in NORM, openPGM, TCP-SMO and MCTCP test,
respectively.

Fig. 10. Throughput of MCTCP when a link failure occurs and co-existing with TCP. The
link S S11 → 21 fails at t = 20 s. A TCP flow is started from time 44–74 s.

T. Zhu et al. Journal of Network and Computer Applications 95 (2017) 105–117

112

MCTCP throughput. This is because the MST will be updated to
bypass the failing link when a link failure is detected, and the lost
multicast packets will be retransmitted quickly. Second, during the
period from time 44–74 s, as no alternative links for adjustment,
MCTCP has to share the link with TCP. The congestion control
mechanism on the sender makes MCTCP TCP-friendly.

5.2. Real-world workload evaluation

In this experiment, we try to find out how MCTCP performs in
practice network environment. We assume MCTCP shares the network
with the background traffic, which are according to the patterns of two
real-world workloads, the web search and the data mining.

The evaluations are performed in two setups, including the
separated and shared setups.

• Separated setup. We divide the hosts into two groups, one for
generating background traffic (GroupA) and the other for performing
evaluation (GroupB). Specifically, we put all the even numbered
hosts into GroupA and the odd numbered hosts into GroupB. For the
GroupA, all the hosts open socket sink for incoming traffic and the
host with index i sends data to the host with index
i mod numhosts(+ 4) (). The flow sizes are in according with the
CDFs of realistic workloads mentioned above, which are similar to
Bai et al. (2015).

• Shared setup. The background traffic shares the same hosts with
the multicast group members. For the background traffic, all the
hosts open socket sinks for incoming traffic and all the hosts send
data to a server based on exponential distribution. Each client
randomly selects a receiver each time. To make the background
traffic more complicated and ensure that the host side is not the
bottleneck of the multicast group transmission, we also inject
several additional flows randomly among the nodes which do not
run multicast testing.

First, we evaluate the throughput of TCP-SMO, MCTCP-S and
MCTCP-W under the background traffic in the two workload patterns
in separated setup, while varying the network loads from 0.1 to 0.8, in

both Fat-Tree and Leaf-Spine topologies. We start two and four
multicast groups in Fat-Tree and Leaf-Spine topology, respectively.
Each group consists of a sender and three receivers. The members of
each group span at least 3 racks and the racks and group members are
randomly chosen from GroupB. Different multicast groups do not share
common group members. We run ECMP during this evaluation. The
MGM monitors the network at 2 s polling rate.

Figs. 11 and 12 show the throughput of TCP-SMO, MCTCP-S and
MCTCP-W under background traffic in patterns of web search and data
mining workloads in Fat-Tree and Leaf-Spine topology respectively. We
make the following two observations. First, MCTCP (both the MCTCP-S
and MCTCP-W) outperforms TCP-SMO in throughput. Specifically,
MCTCP-S (MCTCP-W) achieves throughput improvements over TCP-
SMO by ∼10% − 2.1× (∼10% − 2.1×) and ∼17% − 1.3× (∼10% − 2.1×)
under the web search workload in Fat-Tree and Leaf-Spine topology and
achieves ∼1% − 1.1× (∼1% − 2.5×) and ∼2% − 76% (∼7% − 1.5×) im-
provements under the data mining workload in Fat-Tree and Leaf-Spine
topology, respectively. Second, MCTCP-W outperforms MCTCP-S in
most cases, especially when load is larger than 0.5.

MCTCP is able to find the less congested links during runtime, and
adjusts the MSTs to improve the performance of multicast groups. As
only half of the hosts in the network generate background traffic, the
network will not be saturated by the background traffic. Therefore,
there are always more idle links exist during the multicast group
transmission. MCTCP-S can find the lower cost MST to keep the
multicast group in the less congested state. MCTCP-W will find the
wider MST to maximize the multicast group throughput. When the load
is low (such as less than 0.5), there are little bottleneck links in the
network, the SP based algorithm is comparable with the SWP based
algorithm. When the load is heavy, a large number of bottleneck links
will significantly reduce the throughput of the multicast groups, even if
the sum weight of the MST is low. As a result, MCTCP-W performs
much better than MCTCP-S when the load is larger than 0.5.

Second, we perform the same evaluations in shared setup. Figs. 13
and 14 show the results in shared setup. Similar to the separated setup,
MCTCP (both the MCTCP-S and MCTCP-W) outperforms TCP-SMO in
throughput. MCTCP-S (MCTCP-W) achieves throughput improvements
over TCP-SMO by ∼11% − 34% (∼17% − 51%) and ∼10% − 33%

Fig. 11. Average throughput of TCP-SMO, MCTCP-S and MCTCP-W under two background traffic in patterns of web search and data mining in Fat-Tree topology in separated setup.

Fig. 12. Average throughput of TCP-SMO, MCTCP-S and MCTCP-W under two background traffic in patterns of web search and data mining in Leaf-Spine topology in separated setup.

T. Zhu et al. Journal of Network and Computer Applications 95 (2017) 105–117

113

(∼10% − 36%) under the web search workload in Fat-Tree and Leaf-
Spine topology and achieves ∼21% − 45% (∼28% − 49%) and
∼15% − 38% (∼30% − 39%) improvements under the data mining work-
load in Fat-Tree and Leaf-Spine topology, respectively. Compared to the
separated setup, the throughput improvements achieved in shared setup
is much smaller. This is because that, in shared setup, more background
traffic is generated in the network and the traffic is much more balanced
compared with that in separated setup, so that leaving much less free
space for MST adjustment.

Third, we evaluate the throughput of TCP-SMO and MCTCP-W
varying the receiver numbers. The evaluations are performed under the
background traffic in web search patterns in shared setup, while
varying the network loads from 0.1 to 0.4, in Fat-Tree topology. We
start two multicast groups, and the two groups share one same receiver.
Fig. 15 shows the results varying the receiver numbers. MCTCP
achieves ∼20% − 45% throughput improvements in different receiver
numbers. From the results we can see that, the throughput improve-
ments remain as the receiver number increases.

5.3. Application-based evaluation

We carry out performance comparison among HDFS-O, HDFS-T
and HDFS-M under background traffic in patterns of the web search

workload in both the Fat-Tree and Leaf-Spine topologies. In HDFS, for
the common case, the replication factor is default three, with one
replica on a node in the local rack, another on a node in a remote rack,
and the last on a different node in the same remote rack. However, in
many cases, three copies could be distributed in different racks for the
sake of load balance or data protection. In order to fully demonstrate
the impact of the network on HDFS data replication, we configure all
replicas on remote nodes. That is, we start one name node and multiple
data nodes on different hosts, and perform tests on the name node
host. All data nodes store data on Ramdisk.

We conduct the evaluations in both the separated and shared
setups, which are generated in the same way as in Section 5.2. First,
we compare HDFS-O, HDFS-T and HDFS-M under separated setup
with three replicas, varying the load from 0 to 0.6. When load is 0,
there is no background traffic. Second, we compare HDFS-O, HDFS-T
and HDFS-M under shared setup with load 0.2, varying the replica size
from 3 to 6.

We measure two metrics, the per-packet latency and the overall
throughput, with the packet size 64 KB, data size 300 MB. The per-
packet latency is a microbenchmark, which reflects the write latency
when the request size is small. Both the throughput and the latency are
important for HDFS.

Fig. 16 depicts the results under separated setup, from which we

Fig. 13. Average throughput of TCP-SMO, MCTCP-S and MCTCP-W under two background traffic in patterns of web search and data mining in Fat-Tree topology in shared setup.

Fig. 14. Average throughput of TCP-SMO, MCTCP-S and MCTCP-W under two background traffic in patterns of web search and data mining in Leaf-Spine topology in shared setup.

Fig. 15. Average throughput of TCP-SMO, MCTCP-S and MCTCP-W under background traffic in patterns of web search in different receivers.

T. Zhu et al. Journal of Network and Computer Applications 95 (2017) 105–117

114

have three clear observations. First, the multicast-based data replica-
tion schemes outperform the pipeline-based scheme, especially in per-
packet latency. The latency of pipeline-based scheme is typically about
3 times the multicast-based schemes. Second, compared with HDFS-O,
HDFS-M achieves ∼50% − 1.6× better throughput and ∼50% − 72%
lower per-packet latency in both Fat-Tree and Leaf-Spine topologies
under web search background traffic. Third, HDFS-M is almost
analogous to HDFS-T without background traffic, and improves the
throughput by ∼20% − 1.1×, and decreases the per-packet latency by
∼10% − 45% in both Fat-Tree and Leaf-Spine topologies under web
search background traffic.

Fig. 17 depicts the results in shared setup with different replica
sizes. Similar to the former evaluation, HDFS-M outperforms the
alternative schemes and the performance improvements remain as
the replica size increases.

HDFS-M outperforms HDFS-O and HDFS-T in both latency and
throughput mainly due to two reasons. First, compared with HDFS-O,
HDFS-M has shorter transmission paths and generates much fewer
redundant network packets. So the probability of being affected by the
background traffic is smaller, which can result in significant latency
reduction and throughput improvement in HDFS-M. In HDFS-O, each
packet is processed serially by all the three data nodes. For each packet,
the completion time includes multiple processing and transmission
time. Moreover, when the network is congested, multiple redundant
unicast traffics will incur heavier congestion in network, leading to
significant performance (both latency and throughput) degradation.
Second, HDFS-M can adjust the MSTs to the most efficient one timely
based on the network utilization. Therefore, HDFS-M can choose the
least congested links to minimize performance loss. Although HDFS-T
has the same short transmission path as HDFS-M, it is unable to
bypass the congested links, thus results in more performance degrada-
tion due to the background traffic. As a result, HDFS-M can achieve
better throughput than the alternative schemes.

5.4. Complexity of the controller

The MST can be calculated immediately when a group arrives, as
the GSP which needed in MST calculation will always be calculated in
advance, i.e., when the controller initiation or at the beginning of each
adjustment period. Therefore, the calculation time of a group is
independent of the topology scale and the total number of active
groups, but only related to the receiver numbers. Fig. 18 depicts the
results of MST calculation time for various receivers in k = 8 and k = 16
Fat-tree topology. There are 32 edge switches in k = 8 Fat-tree
topology. When the receiver number is larger than 32, the MST will
span all pods, thus leading to saturation on calculation time. It is worth
noting that when generating a group, we first calculate the MST, and
then install it to the corresponding switches. The install time which
depends on the controller platform implementation is out of the scope
of this paper.

During an adjustment period, the controller first checks the current
status of all links, in which we use ‘OFPMPPORT STATS ’ interface to get
the port statistics of each switch. If link congestion is detected, we will
re-calculate the GSP using Dijkstra algorithm. Table 2 shows the link
stats, GSP calculation and a group generation time under k = 8 and k =
16 Fat-tree topology, respectively. We believe the link stats time is
limited by the single-thread implementation of Ryu, and it can
accelerate the process to more acceptable range by using multi-thread.
By default, we will calculate the full GSP in each adjustment period, so
that the controller can adjust a large number of groups in a single
period. In the case of only a small number of active groups, we choose

Fig. 16. Performance comparison among HDFS-O, HDFS-T and HDFS-M in Fat-Tree and Leaf-Spine topologies, in separated setup.

Fig. 17. Performance comparison among HDFS-O, HDFS-T and HDFS-M in different
replica sizes.

Fig. 18. Calculation times for different receiver numbers.

Table 2
Calculation times in different topologies with three receivers.

Topology Link Stats (ms) GSP (ms) Group generation

Calc (ms) Install (ms)

k = 8 38.41 1.789 0.615 13.929
k = 16 154.254 25.544 0.722 13.53

T. Zhu et al. Journal of Network and Computer Applications 95 (2017) 105–117

115

to not calculate the full GSP, but only the shortest paths for MST
calculation on demand.

As can be seen from the Algorithm 1, the time complexity of
multicast adjustment is O L G O MST(| | + | |· ()), where the L| | is number of
links, the G| | is the number of groups which need to be adjusted, and
the O(MST) is the complexity of calculating a single MST. For the MPH
algorithm, the time complexity of calculating an MST is O mn()2 , where
m is the receiver number of a multicast group, and n is the total
number of the network nodes. Table 3 shows the adjustment time of
various group numbers under k = 8 and k = 16 Fat-tree topology. The
results turn out that the controller can adjust thousands of groups
within one second.

We examine the CPU usage and network overhead of the SDN
controller for different groups in k = 8 and k = 16 Fat-tree topology,
respectively. As shown in Table 4, the computation and network
overhead are negligible.

6. Conclusion

In order to meet the requirements of data center multicast, we
propose MCTCP, an SDN-based reliable multicast data transmission
solution, mainly for small groups in data centers. It is a sender-initiated
transport-layer solution which extends TCP as the host-side portocol.
The MSTs are maintained by the MGM in a centralized way. Therefore,
the MGM can leverage real-time network states to reactively multicast
flows to active and low-utilized links. For each group, the MST is
calculated during session establishment and adjusted dynamically in
case of link congestion or failures to achieve optimal routing efficiency
and robustness. Taken together, MCTCP is efficient in both end hosts
and multicast routing. In our experiments, MCTCP outperforms the
existing reliable multicast solutions, especially in the case of co-existing
with background traffic. Moreover, we implement multicast-based data
replication on HDFS using MCTCP. Experimental results show that the
multicast-based data replication has better performance than the
original pipeline-based HDFS, and the multicast-based scheme built
with MCTCP performs better.

Acknowledgment

This work is supported in part by the National High Technology
Research and Development Program (863 Program) of China under
Grant No. 2013AA013203; National Basic Research 973 Program of
China under Grant 2011CB302301. This work is also supported by
NSFC No. 61232004, No. 61502190, No. 61173043 and State Key
Laboratory of Computer Architecture, No. CARCH201505. Dan Feng is
the corresponding author.

References

Adamson B., Bormann, C., Handley, M., Macker, J., 2009. Nack-oriented reliable
multicast (norm) transport protocol. rfc5740 (November).

Al-Fares, M., Loukissas, A., Vahdat, A., 2008. A scalable, commodity data center network
architecture. In: Proceedings of the ACM SIGCOMM 2008 Conference on Data
Communication, SIGCOMM'08, ACM, New York, NY, USA, pp. 63–74. http://dx.doi.
org/10.1145/1402958.1402967.

Alizadeh, M., Edsall, T., 2013. On the data path performance of leaf-spine datacenter
fabrics. In: 2013 IEEE Proceedings of the 21st Annual Symposium on High-
Performance Interconnects, HOTI'13, IEEE Computer Society, Washington, DC,
USA, pp. 71–74. http://dx.doi.org/10.1109/HOTI.2013.23.

Alizadeh, M., Greenberg, A., Maltz, D.A., Padhye, J., Patel, P., Prabhakar, B., Sengupta,
S., Sridharan, M., 2010. Data center tcp (dctcp). In: SIGCOMM, ACM, New York,
USA, pp. 63–74.

Bai, W., Chen, K., Wang, H., Chen, L., Han, D., Tian, C., 2015. Information-agnostic flow
scheduling for commodity data centers. In: NSDI, USENIX Association, Oakland,
CA, pp. 455–468.

Benson, T., Akella, A., Maltz, D.A., 2010. Network traffic characteristics of data centers in
the wild. In: IMC, ACM, New York, USA, pp. 267–280.

Cain, B., Deering, D.S.E., Fenner, B., Kouvelas, I., Thyagarajan, A., 2015. Internet Group
Management Protocol, Version 3, IETF RFC 3376 (Oct.). http://dx.doi.org/10.
17487/rfc3376.

Dijkstra, E.W., 1959. A note on two problems in connexion with graphs. Numer. Math. 1
(1), 269–271. http://dx.doi.org/10.1007/BF01386390.

Estrin, D., Farinacci, D., Helmy, A., Thaler, D., Deering, S., Handley, M., Jacobson, V.,
Liu, C., Sharma, P., Wei, L., 1997. Protocol independent multicast-sparse mode
(pim-sm): Protocol specification, rFC2117 (June).

Floyd, S., Jacobson, V., Liu, C.-G., McCanne, S., Zhang, L., 1997. A reliable multicast
framework for light-weight sessions and application level framing. IEEE/ACM Trans.
Netw. 5 (6), 784–803. http://dx.doi.org/10.1109/90.650139.

Floyd, R.W., 1962. Algorithm 97: shortest path. Commun. ACM 5 (6), 345. http://
dx.doi.org/10.1145/367766.368168.

Ge, J., Shen, H., Yuepeng, E., Wu, Y., You, J., 2013. An openflow-based dynamic path
adjustment algorithm for multicast spanning trees. Secur. Priv. Comput. Commun.
(TrustCom), 1478–1483. http://dx.doi.org/10.1109/TrustCom.2013.179.

Ghemawat, S., Gobioff, H., Leung, S.-T., 2003. The google file system. SIGOPS Oper.
Syst. Rev. 37 (5), 29–43. http://dx.doi.org/10.1145/1165389.945450.

Greenberg, A., Hamilton, J.R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz, D.A.,
Patel, P., Sengupta, S., 2009. Vl2: A scalable and flexible data center network. In:
SIGCOMM, ACM, New York, USA, pp. 51–62. http://dx.doi.org/10.1145/1592568.
1592576.

Hadoop, 2016. 〈https://hadoop.apache.org〉.
Handigol, N., Heller, B., Jeyakumar, V., Lantz, B., McKeown, N., 2012. Reproducible

network experiments using container-based emulation, In: CoNEXT, ACM, New
York, NY, USA, pp. 253–264. http://dx.doi.org/10.1145/2413176.2413206.

Iyer, A., Kumar, P., Mann, V., 2014. Avalanche: Data center multicast using software
defined networking. In: COMSNETS, pp. 1–8. http://dx.doi.org/10.1109/
COMSNETS.2014.6734903.

Jeacle, K., Crowcroft, J., 2005. Tcp-xm: unicast-enabled reliable multicast. In: ICCCN,
pp. 145–150. http://dx.doi.org/10.1109/ICCCN.2005.1523829.

Kim, K.S., ping Li, C., Modiano, E., 2014. Scheduling multicast traffic with deadlines in
wireless networks. In: INFOCOM, pp. 2193–2201. http://dx.doi.org/10.1109/
INFOCOM.2014.6848162.

Lehman, L., Garland, S., Tennenhouse, D., 1998. Active reliable multicast. In:
INFOCOM, 2, pp. 581–589. http://dx.doi.org/10.1109/INFCOM.1998.665078.

Li, D., Xu, M., chen Zhao, M., Guo, C., Zhang, Y., Wu, M.-Y., 2011. Rdcm: Reliable data
center multicast. In: INFOCOM, pp. 56–60. http://dx.doi.org/10.1109/INFCOM.
2011.5935228.

Liang, S., Cheriton, D., 2002. Tcp-smo: extending tcp to support medium-scale multicast
applications. In: INFOCOM, pp. 1356–1365. http://dx.doi.org/10.1109/INFCOM.
2002.1019386.

Marcondes, C.A.C., Santos, T., Godoy, A.P., Viel, C.C., Teixeira, C.A.C., 2012. Castflow:
Clean-slate multicast approach using in-advance path processing in programmable
networks. In: ISCC, IEEE, pp. 94–101.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., 2008. Enabling innovation in campus networks. SIGCOMM 38 (2),
69–74. http://dx.doi.org/10.1145/1355734.1355746.

openpgm, 2016. 〈http://code.google.com/p/openpgm〉.
Paul, S., Sabnani, K.K., Lin, J.C.H., Bhattacharyya, S., 1997. Reliable multicast transport

protocol (rmtp). IEEE J. Sel. Areas Commun. 15 (3), 407–421. http://dx.doi.org/
10.1109/49.564138.

Rizzo, L., 2000. Pgmcc: A tcp-friendly single-rate multicast congestion control scheme.
SIGCOMM, ACM, New York, NY, USA, pp. 17–28. http://dx.doi.org/10.1145/
347059.347390.

Ryu, 2016. 〈http://osrg.github.io/ryu〉.
Shen, S.H., Huang, L.H., Yang, D.N., Chen, W.T., 2015. Reliable multicast routing for

software-defined networks. In: 2015 IEEE Conference on Computer
Communications (INFOCOM), pp. 181–189. http://dx.doi.org/10.1109/INFOCOM.
2015.7218381.

Shvachko K., Kuang, H., Radia, S., Chansler, R., 2010. The hadoop distributed file
system. In: MSST, pp. 1–10. http://dx.doi.org/10.1109/MSST.2010.5496972.

Spark, 2016. 〈http://spark.apache.org〉.
Speakman, T., Crowcroft, J., Gemmell, J., Farinacci, D., Lin, S., 2001. Pgm reliable

transport protocol specification. rFC3208 (December).

Table 3
Adjustment times for various groups g in different topologies with three receivers.

Topology g = 10 (ms) g = 100 (ms) g = 1000 (ms) g = 10,000 (ms)

k = 8 12.458 75.695 491.822 5189.126
k = 16 62.951 111.259 635.594 5453.479

Table 4
CPU usage and network overhead in SDN controller for different groups g with three
receivers.

Topology CPU (%) Netowork (KB/s)

g = 100 g = 1000 g = 100 g = 1000

k = 8 1.20 4.70 54.8 55.2
k = 16 3.10 5.80 292 293

T. Zhu et al. Journal of Network and Computer Applications 95 (2017) 105–117

116

doi:10.1145/1402958.1402967
doi:10.1145/1402958.1402967
doi:10.1109/HOTI.2013.23
doi:10.17487/rfc3376
doi:10.17487/rfc3376
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1109/90.650139
http://dx.doi.org/10.1145/367766.368168
http://dx.doi.org/10.1145/367766.368168
http://dx.doi.org/10.1109/TrustCom.2013.179
http://dx.doi.org/10.1145/1165389.945450
http://dx.doi.org/10.1145/1592568.1592576
http://dx.doi.org/10.1145/1592568.1592576
https://hadoop.apache.org
doi:10.1145/2413176.2413206
doi:10.1109/COMSNETS.2014.6734903
doi:10.1109/COMSNETS.2014.6734903
doi:10.1109/ICCCN.2005.1523829
doi:10.1109/INFOCOM.2014.6848162
doi:10.1109/INFOCOM.2014.6848162
http://dx.doi.org/10.1109/INFCOM.2011.5935228
http://dx.doi.org/10.1109/INFCOM.2011.5935228
http://dx.doi.org/10.1109/INFCOM.2002.1019386
http://dx.doi.org/10.1109/INFCOM.2002.1019386
http://dx.doi.org/10.1145/1355734.1355746
http://code.google.com/p/openpgm
http://dx.doi.org/10.1109/49.564138
http://dx.doi.org/10.1109/49.564138
http://dx.doi.org/10.1145/347059.347390
http://dx.doi.org/10.1145/347059.347390
http://osrg.github.io/ryu
doi:10.1109/INFOCOM.2015.7218381
doi:10.1109/INFOCOM.2015.7218381
doi:10.1109/MSST.2010.5496972
http://spark.apache.org

Takahashi, H., Matsuyama, A., 1980. An approximate solution for the steiner problem in
graphs. Math. Jpn. 24 (6), 573–577.

Talpade, R., Ammar, M., 1995. Single connection emulation (sce): an architecture for
providing a reliable multicast transport service. In: Distributed Computing Systems,
pp. 144–151. http://dx.doi.org/10.1109/ICDCS.1995.500013.

Visoottiviseth, V., Mogami, T., Demizu, N., Kadobayashi, Y., Yamaguchi, S., 2001. M/tcp:
The multicast-extension to transmission control protocol. In: ICACT, Muju, Korea, Feb.

Wang, Z., Crowcroft, J., 1996. Quality-of-service routing for supporting multimedia
applications. IEEE J. Sel. Areas Commun. 14 (7), 1228–1234. http://dx.doi.org/
10.1109/49.536364.

Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E., Maltzahn, C., 2006. Ceph: A scalable,
high-performance distributed file system. OSDI, USENIX Association, Berkeley, CA,
USA, pp. 307–320.

Xia, Y., Ng, T.S.E., Sun, X.S., 2015. Blast: Accelerating high-performance data analytics
applications by optical multicast. In: 2015 IEEE Conference on Computer
Communications (INFOCOM), Hong Kong, China, pp. 1930–1938. http://dx.doi.
org/10.1109/INFOCOM.2015.7218576.

Yang, Y., Qin, Z., Li, X., Chen, S., 2012. Ofm: a novel multicast mechanism based on
openflow. Adv. Inf. Sci. Serv. Sci. 4 (9), 278–286.

Yavatkar, R., Griffoen, J., Sudan, M., 1995. A reliable dissemination protocol for
interactive collaborative applications. In: MULTIMEDIA, ACM, New York, USA, pp.
333–344.

Zhu, T., Wang, F., Hua, Y., Feng, D., Wan, Y., Shi, Q., Xie, Y., 2016. Mctcp: Congestion-
aware and robust multicast tcp in software-defined networks. In: IEEE/ACM
Proceedings of the 24th International Symposium on Quality of Service (IWQoS), pp.
1–10. http://dx.doi.org/10.1109/IWQoS.2016.7590433.

Tingwei Zhu He received the BE degree in computer
science and technology from the Huazhong University of
Science and Technology (HUST), Wuhan, China, in 2012.
He is currently a PhD student majoring in Computer
Architecture in HUST. His current research interests
include software-defined networking and distributed sto-
rage systems. He has several publications in international
conferences, including IWQoS and ICPP.

Dan Feng She received the BE, ME, and PhD degrees in
Computer Science and Technology in 1991, 1994, and
1997, respectively, from Huazhong University of Science
and Technology (HUST), China. She is a professor and vice
dean of the School of Computer Science and Technology,
HUST. Her research interests include computer architec-
ture, massive storage systems, and parallel file systems. She
has more than 100 publications in major journals and
international conferences, including IEEE-TC, IEEE-TPDS,
ACM-TOS, JCST, FAST, USENIX ATC, ICDCS, HPDC, SC,
ICS, IPDPS, and ICPP. She serves on the program commit-
tees of multiple international conferences, including SC
2011, 2013 and MSST 2012. She is a member of IEEE and

a member of ACM.

Fang Wang She received her BE degree and Master
degree in computer science in 1994, 1997, and Ph.D.
degree in computer architecture in 2001 from Huazhong
University of Science and Technology (HUST), China. She
is a professor of computer science and engineering at
HUST. Her interests include distribute file systems, parallel
I/O storage systems and graph processing systems. She has
more than 50 publications in major journals and interna-
tional conferences, including FGCS, ACM TACO, SCIENCE
CHINA Information Sciences, Chinese Journal of
Computers and HiPC, ICDCS, HPDC, ICPP.

Yu Hua He received the BE and PhD degrees in computer
science from the Wuhan University, China, in 2001 and
2005, respectively. He is currently a professor at the
Huazhong University of Science and Technology, China.
His research interests include computer architecture, cloud
computing and network storage. He has more than 80
papers to his credit in major journals and international
conferences including IEEE Transactions on Computers
(TC), IEEE Transactions on Parallel and Distributed
Systems (TPDS), USENIX ATC, USENIX FAST,
INFOCOM, SC, ICDCS, ICPP and MASCOTS. He has been
on the organizing and program committees of multiple
international conferences, including INFOCOM, ICDCS,

ICPP, RTSS and IWQoS. He is a senior member of the IEEE and CCF, a member of
ACM, and USENIX.

Qingyu Shi He received the BE degree in computer
science and technology from the Huazhong University of
Science and Technology (HUST), Wuhan, China, in 2014.
He is currently a PhD student majoring in Computer
Architecture in Wuhan National Laboratory for
Optoelectronics (WNLO). His current research interests
include software-defined networking and network storage
system.

Yanwen Xie He received the BE degree in computer
science and technology from Huazhong University of
Science and Technology (HUST), Wuhan, China, in 2012.
He is currently a PhD student majoring in Computer
Architecture in HUST. His current research interests
include erasure coding, distributed storage systems and
big-data parallel computing.

Yong Wan He is currently an assistant professor in the
School of Computer Engineering at the JingChu University
of Technology. He obtained his Ph.D. degree in Computer
Science from HuaZhong University of Science and
Technology, China, in 2013. His current research research
interests include Computer networks and protocols, High
Performance Network Cluster, Parallel and Distributed
Systems.

T. Zhu et al. Journal of Network and Computer Applications 95 (2017) 105–117

117

http://refhub.elsevier.com/S1084-8045(17)30245-X/sbref8
http://refhub.elsevier.com/S1084-8045(17)30245-X/sbref8
doi:10.1109/ICDCS.1995.500013
http://dx.doi.org/10.1109/49.536364
http://dx.doi.org/10.1109/49.536364
doi:10.1109/INFOCOM.2015.7218576
doi:10.1109/INFOCOM.2015.7218576
http://refhub.elsevier.com/S1084-8045(17)30245-X/sbref10
http://refhub.elsevier.com/S1084-8045(17)30245-X/sbref10
http://dx.doi.org/10.1109/IWQoS.2016.7590433

	A congestion-aware and robust multicast protocol in SDN-based data center networks
	Introduction
	Motivations and related work
	Motivations
	Related work

	MCTCP design
	Host-side protocol
	Session establishment
	Data transmission
	Session close

	Multicast group manager
	Session manager
	Link monitor
	Routing manager

	Implementation details
	Prototype implementation
	Application integration

	Evaluation
	Basic evaluation
	Real-world workload evaluation
	Application-based evaluation
	Complexity of the controller

	Conclusion
	Acknowledgment
	References

