
Adaptive Network Load Balancing at the End Host
for Traffic Bursts in Data Centers

Qingyu Shi∗†, Huang Huang†, Xiaocui Li∗†, Chuang Li∗†, Wenzhi Cao∗†, Limei Liu∗†
∗School of Advanced Interdisciplinary Studies, Hunan University of Technology and Business, Changsha, China

†Xiangjiang Laboratory, Changsha, China

Abstract—The network load balancing mechanism plays a
pivotal role in enhancing transmission performance in modern
cloud data centers. Conventional flowlet-based approaches at
host side offer a balance between performance and deployment
simplicity. However, their passive load balancing strategy re-
stricts rerouting opportunities, and lacks precision in congestion
detection as it necessitates at least one round-trip time (RTT)
to acquire end-to-end congestion feedback. To overcome the
performance loss caused by the above limitations, we propose
BurstLoader, an enhanced flowlet-based mechanism that adapts
to varying traffic burst intensities and improves congestion
detection accuracy. BurstLoader proactively reroutes congested
flows when no new flowlets are detected, while simultaneously
avoiding the rerouting of flowlets that are in good transmission
states. Furthermore, BurstLoader incorporates delay and its gra-
dient for a more nuanced and precise congestion detection. The
extensive experiments demonstrate that BurstLoader achieves a
significant reduction in flow completion time (FCT) by up to 48%
compared to other flowlet-based solutions deployed at the end
host, while maintaining competitive performance even against
schemes that require custom switches under realistic workloads.

Index Terms—data center networks, load balancing, burst
traffic.

I. INTRODUCTION

The escalating performance requirements for high band-
width and low latency in cloud data center applications,
particularly those involving online data-intensive services [1]–
[4], pose a formidable obstacle for data center networks
(DCNs). In data centers, topologies with multiple roots,
like the fat-tree and leaf-spine, are commonly implemented.
These designs ensure a variety of potential routing paths for
communication between any pair of end hosts. Efficiently
balancing traffic across these multiple paths holds the key
to enhancing performance for data center applications [5]–
[8]. Currently, Equal Cost Multiple Path (ECMP) forwarding
[9] serves as the standard load balancing strategy in DCNs.
This method employs a hash function to direct traffic across
various available paths, leveraging unique packet header at-
tributes to make these assignments. However, ECMP falls
short due to hash collisions and its inability to adapt to
dynamic traffic and asymmetric topologies. To address these
limitations, numerous promising alternatives to ECMP have
been designed. These alternatives aim to provide greater
adaptability by sensing congestion, load intensity, or network
asymmetry, thereby enhancing performance. By leveraging
these advanced load balancing techniques, DCNs can better
meet the escalating performance demands of applications.

As we know, burst traffic is typical in DCNs and has been
studied extensively in load balancing [5], [10]–[13]. Flowlet-
based solutions emerge as particularly effective in dividing
burst traffic, thereby enhancing load balancing performance.
Flowlets essentially refer to bursts of packets originating
from a single flow, distinctively separated by substantial gaps.
When rerouted across different paths at appropriate inter-
vals, flowlets typically result in minimal packet reordering.
Nevertheless, the generation of flowlets is largely influenced
by traffic characteristics. Schemes that rely solely on flowlet
switching tend to be reactive in nature, and they may not
always respond promptly to congestion during periods of
smooth workload. Some other solutions (e.g., RPS [14],
Presto [15], DRILL [16] and AG [17]), implemented either at
end hosts or switches, disseminate fixed or dynamic switching
units across multiple paths in order to optimize the utilization
of link resources. They can experience packet reordering
under asymmetric network or require customized hardware for
complex packet scheduling algorithms. Furthermore, several
solutions, such as PLB [18] and Hermes [19], which employ
proactive load balancing strategies. These strategies are based
on a comprehensive assessment of flow status, encompassing
factors like the flow size, the sending rate, and the network
resource utilization ratio. They can detect and reroute flows
with unnormal status (such as severe congestion and network
failures). However, these schemes fail to capitalize on the
opportunity of flowlet scheduling during traffic bursts, thus
sacrificing potential load balancing prospects for performance
improvement.

According to our observation, how to ensure efficient
load balancing without customized hardware under both
highly bursty and low bursty traffic is an unsolved problem.
Therefore, we present BurstLoader to achieve adaptability to
varying traffic burst intensities. BurstLoader monitors flow
status at end hosts, facilitating the decision-making process
for flowlet switching. First, BurstLoader employs various
events such as retransmissions and timeouts, along with the
flow’s sending rate, the estimated remaining flow size based
on the amount already sent, and the end-to-end latency of
flows, to assess the status of the flow. The end-to-end latency
in BurstLoader can be measured with sufficient precision with
the help of DPDK or NIC hardware. Besides, BurstLoader
reroutes new flowlets in appropriate flow status to explore
more rerouting opportunities, while avoids rerouting flowlets
in high transmission efficiency. In summary, we have made

three principal contributions:
• Our empirical analysis examines the limitations inherent

in current load balancing schemes, revealing an impor-
tant need for enhanced adaptability to varying traffic
burst intensities.

• We present BurstLoader, a simple yet efficient load
balancing mechanism running at end hosts to adapt to
varying traffic burst intensities. BurstLoader promptly
responds to congestion and failures by leveraging real-
time flow status to initiate proactive rerouting when
the flowlet timeout has not occurred. Meanwhile, Burst-
Loader performs flowlet switching only for flows in
appropriate transmission state.

• We evaluate BurstLoader through extensive experiments,
showing that BurstLoader achieves up to 48% better FCT
than other flowlet-based solutions deployed at host side,
while maintaining competitive performance even against
schemes that require custom switches under realistic
workloads.

In the remainder, supported by an empirical study, we
show the background and our motivation in section II. Then
we present our BurstLoader mechanism in section III. We
evaluate BurstLoader and show the superiority of BurstLoader
compared to other schemes in section IV. Finally, we briefly
introduce the essential related work in section V and summa-
rize our work in section VI.

II. BACKGROUND AND MOTIVATION

Data center networks usually have network asymmetries
and traffic bursts [5], [11], [17], [19], [20]. In addition to
the above two characteristics, we observe that data center
traffic has the varying traffic burst intensities. For example,
as shown in Fig. 1, the changes of traffic bursts mainly come
from changes in application types and load intensities. Fig.
1a shows that the flow 2 is more bursty than the flow 1 since
they come from different applications. Fig. 1b shows that the
flow 2 is more bursty than the flow 1, where the inter-arrival
time of adjacent packets of flow 2 increases due to network
congestion caused by increased load.

Many flowlet-based load balancing mechanisms have been
designed to adapt to network asymmetries and traffic bursts,
which typically utilize a fixed flowlet timeout threshold to
generate new flowlets [5], [11], [21]. However, the existing
schemes cannot adapt to varying traffic burst intensities to
provide efficient load balancing, which can be analyzed from
the following two aspects.

A. Drawbacks of Existing Scheduling Policies

Flowlet switching has proven effective in minimizing
packet reordering for load balancing in scenarios with asym-
metric network and burst traffic [11]. Multiple solutions (e.g.,
CONGA [21], CLOVE [22] and LetFlow [11]) utilize flowlet
switching to achieve precise load balancing. Nevertheless, the
utilization of flowlet switching with a fixed flowlet timeout
value presents two significant constraints:

packet

time

less bursty

packet

time

more bursty

flowlet timeout flowlet timeout flowlet timeout

different

applications

flow 1

flow 2

(a) Different applications

packet

time

less bursty

packet

time

more bursty

flowlet timeout flowlet timeout flowlet timeout

flow 1

different load

intensities

flowlet timeout

other flows

flow 2 other flows

(b) Different load intensities

Fig. 1: Varying traffic burst intensities.

• The immediate rerouting of congested flows to alter-
native paths is hindered when there are limited flowlet
timeout events.

• The frequent occurrence of flowlet timeout events may
lead to the frequent rerouting of flows in good trans-
mission status, exacerbating congestion mismatch and
packet reordering issues [19].

Therefore, prior schemes utilizing flowlet switching falter
in adapting to varying traffic burst intensities. The perfor-
mance degradation caused by the incapacity to adapt to
varying traffic burst intensities is experimentally demonstrated
below.

We quantify the inherent shortcomings of various load
balancing mechanisms in their response to the varying traffic
burst intensities. We have implemented CLOVE-ECN [22],
CONGA [21], and Hermes [19] within the NS3 simulation
environment [23], utilizing two realistic workloads (web-
search and data-mining). CLOVE-ECN distributes flowlets
on multiple paths at end hosts. CONGA employs per-flowlet
switching at the switch. Hermes implements load balancing
in packet grain, leveraging the flow status at the end host to
facilitate proactive rerouting.

We count the frequency of rerouting operations in two
realistic workloads to demonstrate the adaptability of different
solutions to varying traffic burst intensities. The results are
shown in Fig. 2. Given the higher burstiness of the web-
search workload compared to the data-mining workload,
we can observe that flowlet-based schemes trigger rerouting
more frequently under the web-search workload. Conversely,
Hermes exhibits a higher rate of rerouting under the data-
mining workload.

Moreover, the primary performance metric employed in
Fig. 3 is FCT, and for a clearer visualization of the results, we
normalize the FCT relative to Hermes. As depicted in Fig. 3a,
CONGA demonstrates an 8% improvement in performance
over Hermes. Conversely, under the data-mining workload,
Hermes outperforms CONGA by over 10%. This disparity can

H e r m e s C O N G A C L O V E - E C N
0

4 0 0 0 0

8 0 0 0 0

1 2 0 0 0 0

1 6 0 0 0 0

2 0 0 0 0 0

3 5 0 0 0 0 0
4 0 0 0 0 0 0
4 5 0 0 0 0 0
5 0 0 0 0 0 0
5 5 0 0 0 0 0

Th
e f

req
ue

nc
y o

f re
rou

tin
g o

pe
rat

ion
s

s c h e m e s

 T h e f r e q u e n c y o f r e r o u t i n g o p e r a t i o n s

(a) Web-search

H e r m e s C O N G A C L O V E - E C N
0

2 0

4 0

6 0

8 0

3 2 0 0 0
3 3 0 0 0
3 4 0 0 0
3 5 0 0 0
3 6 0 0 0
3 7 0 0 0
3 8 0 0 0
3 9 0 0 0
4 0 0 0 0

Th
e f

req
ue

nc
y o

f re
rou

tin
g o

pe
rat

ion
s

s c h e m e s

 T h e f r e q u e n c y o f r e r o u t i n g o p e r a t i o n s

(b) Data-mining

Fig. 2: The number of rerouting under different workloads.

2 0 4 0 6 0 8 0

1 . 0

1 . 5

2 . 0

FC
T (

No
rm

. to
 He

rm
es

)

L o a d (%)

 C O N G A (w e b s e a r c h)
 C O N G A (d a t a m i n i n g)
 H e r m e s

(a) Overall avg FCT

2 0 4 0 6 0 8 00 . 5

1 . 0

1 . 5

FC
T (

No
rm

. to
 He

rm
es

)

L o a d (%)

 C O N G A (w e b s e a r c h)
 C O N G A (d a t a m i n i n g)
 H e r m e s

(b) Small flow(<100KB) avg

Fig. 3: FCT statistics in different traffic burst intensities
(normalized to Hermes).

be attributed to CONGA’s ability to capitalize on traffic bursts,
thereby affording it more rerouting opportunities, while Her-
mes does not capture new flowlets but sense congestion by
monitoring flow status to balance load. The result shows that
CONGA performs better than Hermes in highly bursty traffic.
However, Hermes achieves better FCTs than the former in
low bursty traffic. Furthermore, as Fig. 3b shows, the average
FCTs for small flows exhibit a pronounced increase with
CONGA as the load intensity increases. As evident from Fig.
2, under the web-search workload, the frequency of rerouting
operations in CONGA is several orders of magnitude higher
than that observed in Hermes due to excessive flows being
broken into new flowlets, which leads to congestion mismatch
and increased out-of-order packets. Therefore, current flowlet
switching cannot adapt to varying traffic burst intensities.
And schemes rerouting flow according to flow status cannot
achieve good performance because they lack the use of flowlet
rerouting opportunities.

B. Drawbacks of Existing Path Congestion Detection

Existing congestion-aware load balancing mechanisms at
host side usually select the least congested or relatively
uncongested path for rerouting flows [21], [22], [24]–[26],
so the accurate detection of path congestion is crucial for
ensuring optimal transmission performance. The congestion
detection in current load balancing uses one-way delay, queu-
ing delay, ECN or other congestion feedbacks to determine
the degree of path congestion. In the following, we use

Draining at max rate

Increasing at rate 4x

Path 1

Path 2

queue length=6

queue length=6

Fig. 4: The one-way delay cannot differentiate congestion
degree.

absolute congestion information to refer to the class of
above congestion feedbacks. However, the existing schemes
lack the perception of congestion trend, so it is difficult to
quickly and accurately evaluate the degree of path congestion,
which leads to wrong path selection, especially under varying
traffic burst intensities.

We illustrate the above problem in Fig. 4, and assume that
the load balancing mechanism uses queuing delay to estimate
the degree of path congestion. Two transmission paths exist
with the same queuing delay in Fig. 4, but one is experiencing
increased congestion, and the other is experiencing congestion
relief. Current schemes do not consider the congestion trends
in different paths and may choose the path where congestion
is being aggravated, resulting in performance degradation.
Therefore, only using queue length or delay cannot compre-
hensively evaluate the congestion degree of the path. The
above analysis inspires us to consider combining absolute
congestion information and congestion trend to improve the
accuracy of congestion detection.

All in all, in the face of the varying traffic burst intensities,
there exist drawbacks of scheduling policy and path conges-
tion detection in current load balancing schemes. We will
provide a detailed exposition of our design in the subsequent
section, addressing the aforementioned issues.

III. DESIGN

In this section, we elaborate on the design details of
BurstLoader. This novel scheme adapts to varying traffic burst
intensities for load balancing at end hosts with no switch
modification, which can be implemented in the hypervisor.
Fig. 5 overviews BurstLoader, which mainly consists of two
modules: traffic analysis module and traffic routing module.

• Traffic Analysis Module: BurstLoader closely monitors
flow status via various flow events (including retrans-
missions and timeouts), sending rates, remaining flow
size, and end-to-end latency. By doing so, it is able to
accurately assign a specific state to each flow. Besides,
BurstLoader checks whether the flow is experiencing
flowlet timeout.

• Traffic Routing Module: BurstLoader adopts XPath
[27] to achieve explicit routing path control at host side.
Besides, BurstLoader selectively and proactively reroutes
flows with the bad transmission state, while rerouting
flowlets that are in the appropriate transmission state.

flow status

estimate

flow

classification

flowlet

monitoring

rerouting decision

&

path selection

application

traffic

traffic analysis traffic routing

forwarding

Fig. 5: BurstLoader overview.

A. Traffic Analysis Module

The traffic analysis module contains flow classification and
flowlet monitoring. It gathers flow statistics by monitoring
flow events, such as packet retransmissions and timeouts, as
well as assessing the sending rate, the estimated remaining
flow size based on the bytes already transmitted, and the
end-to-end latency. BurstLoader detects flow status at packet
granularity, then assigns a specific state to each flow.

The flow state contains the following four categories, which
works together with the flowlet monitoring function as input
data for the rerouting decision.

• Failure state: The TCP retransmission ratio of flow
is high, or the flow has experienced many consecutive
timeouts.

• Bad state: Flows experiencing high end-to-end delay is
considered in this state.

• Good state: Small flows characterized by a high sending
rate are in this state.

• Intermediate state: Flows that do not belong to the
above states are in this state.

The application traffic will undergo the process of traffic
analysis module and subsequently be allocated to a particular
state. The load balancing algorithm of BurstLoader is shown
in Algorithm 1, where the flow classification is located in
lines 1-22. Firstly, in the event of network failures, such as
switch and link malfunctions, or severe congestion, numerous
packets are unable to reach their destination hosts promptly
or are dropped within the network. Additionally, these packet
losses can prompt TCP retransmissions, further compromising
network performance. To address this, BurstLoader calculates
the flow retransmission ratio, adopting a threshold Pt of 1% as
referenced in prior research [19], for every few milliseconds.
It also keeps track of the number of timeouts, setting a
threshold Nt of 3, to facilitate the selective and proactive
rerouting of flows (lines 3-6). By doing so, BurstLoader aims
to minimize the impact of network failures and congestion
on overall network performance. The rerouting procedure
will select the least congested path from the other paths that
remove the current path, which helps avoid transmission over
high packet loss or failed network links.

Moreover, BurstLoader efficiently and proactively reroutes
flows encountering network congestion to optimize traffic dis-
tribution. The improvement of FCTs through rerouting events
is contingent upon various factors, including the remaining
flow size and the flow sending rate. Initially, rerouting can
trigger packet reordering and congestion mismatches, po-

Algorithm 1 Load balancing algorithm.

Require: each packet in the sending flow f
Ensure: the selected path p

1: X ← set of all paths
2: if f is not a new flow then
3: p← old path
4: if f.timeout > Nt or f.retrans > Pt then
5: X ← X − p
6: p← Rerouting procedure(X)
7: else if f.delay > TdelayHigh then
8: if f.size > S and f.rate 6 R then
9: p← Rerouting procedure(X)

10: end if
11: else if f.size < S then
12: update f.updateT ime
13: return p
14: else if f.flowlet timeout==true then
15: p← Rerouting procedure(X)
16: else
17: update f.updateT ime
18: return p
19: end if
20: else
21: p← Rerouting procedure(X)
22: end if
23: update f.updateT ime
24: return p

tentially causing a decrease in the sending rate. And, over
time, the sending rate on the alternative path is observed
to increment gradually in our experiments. Consequently, if
the current transmission rate is already substantial, achieving
significant performance improvements through rerouting be-
comes challenging. Furthermore, rerouting flows with a minor
remaining size often yields limited benefits.

Based on the aforementioned analysis, we implement
proactive rerouting that takes into account various flow status
parameters, including the flow sending rate, remaining flow
size, and one-way delay, to optimize network utilization. To
accomplish this, we utilize the size of the flow already trans-
mitted to estimate the remaining flow size [28]. Additionally,
we employ the flow table to document the transmission rate
and analyze the one-way delay to identify congestion within
the flow. As detailed in lines 7-9 of Algorithm 1, BurstLoader
actively reroutes flows experiencing congestion, indicated by
a one-way delay exceeding TdelayHigh. When rerouting, we
prioritize flows with an relatively large remaining flow size
(S) and a relatively low sending rate (R). By referring to the
previous work [19] and our experiments, we set TdelayHigh

to 180 microseconds, which is calculated as the base RTT
plus 1.5× of the one-hop delay. S is set to 600KB, and R is
established as 30% of the link capacity.

At the end of the traffic analysis, to mitigate the potential
negative impact of frequent rerouting on small flows in flowlet

switching, we disallow the transmission path alteration for
small, uncongested flows (as specified in lines 14-17). This
approach ensures that only larger or congested flows undergo
rerouting, minimizing any potential disruption to small flows.
We utilize one-way delays (denoted as TdelayHigh) to define
the level of congestion a flow is experiencing, and we have
established a fixed threshold for the remaining flow size
(S) to identify small flows. Assuming a packet has not
been allocated a new state during the execution of lines
2-13 in Algorithm 1, BurstLoader will enter the rerouting
procedure to balance the load in response to the flowlet
timeouts. Considering the system overhead, we do not use a
complex benefits model to calculate performance gains before
rerouting flows and a more fine-grained and low-overhead
benefits model is left as our future work.

B. Traffic Routing Module

This module performs the comprehensive rerouting deci-
sion and completes the path selection for each flow. Unlike
prior flowlet-based schemes, BurstLoader employs a selective
flowlet rerouting mechanism specifically designed to address
traffic bursts. Besides, it proactively reroutes flows experienc-
ing severe congestion or network failures even without new
flowlets captured.

Algorithm 1 outlines the rerouting logic that is promptly
invoked for each packet to assess the flow status and consult
the flowlet table. Specifically, as delineated in lines 3-9 of
Algorithm 1, in the event of flows experiencing failure or
bad state, BurstLoader initiates the rerouting procedure. This
decision is based on the assessment that the current path
exhibits a risk of network failures or severe congestion,
necessitating the rerouting. Furthermore, when a flow, already
in an intermediate state, encounters a subsequent flowlet, the
rerouting mechanism is triggered, as indicated in lines 14-
15 of Algorithm 1. BurstLoader dynamically reroutes flows
encountering failures, timeouts, or congestion, and efficiently
utilizes the rerouting potential presented by flowlet switching.

The rerouting procedure is described in Algorithm 2 for
the path selection. Intuitively, the rerouting path should be
at the lowest congestion degree to balance traffic. However,
if all flows were to choose a single path during periods
of burst traffic, that path could rapidly become congested,
leading to significant increases in transmission latency. To
mitigate the herd effect, Algorithm 2 employs a probabilistic
selection process for the forwarding path. The selection of
the available path set is conducted between lines 3-23 of
Algorithm 2 as illustrated, in which the path with a congestion
degree lower than the old path is iteratively included from
all paths. The path selection ratio is the difference between
the congestion degree ∆ and the Ψmax in the set of available
paths. Consequently, a path with a lower degree of congestion
is more likely to be selected as the forwarding path in lines
24-30 of Algorithm 2, reflecting a probabilistic approach that
favors less congested routes.

In the Algorithm 2, BurstLoader needs to determine the
congestion degree of each path. Initially, BurstLoader records

Algorithm 2 Rerouting procedure.

Require: the input flow f , the congestion degree of each path
Ψ, the set of paths X

Ensure: the rerouted path p
Map[]← 0

2: Xlower ← ∅
if f is not a new flow then

4: p← old path
else

6: p← random path
end if

8: for each path i in X do
if Ψi < Ψp then

10: Xlower ← Xlower ∪ i
end if

12: end for
if Xlower == ∅ then

14: return random path in X
end if

16: for each path j←1 to n in X do
if j ∈ Xlower then

18: ∆j ← Ψmax −Ψj

Map[j]←Map[j − 1] + ∆j
20: else

Map[j]←Map[j − 1]
22: end if

end for
24: Ψrand = rand()×Ψmax

for each path k←1 to n in Map do
26: if Ψrand > Map[k − 1] and Ψrand ≤Map[k] then

p← pathk
28: break

end if
30: end for

return p

the timestamp of each packet in the optional fields of the TCP
header to calculate the RTT and one-way delays [26], [29].
Due to the varying traffic burst intensities, the one-way delay
estimated by packet timestamp is insufficient to accurately
assess congestion degrees of different paths, as we analyze
in section II-B. In fact, several congestion control protocols
have integrated the queue length and its gradient to sense
congestion quickly [12], [30]. Inspired by them, BurstLoader
defines the congestion degree of the path as the product of
the sum of packets being transmitted in the network and their
varying gradients, formally expressed in Eq. (1),

Θ(t) = (q(t) + C ·B) · (∆q(t)

∆t
+ C) (1)

where q(t) is the sum of all queue lengths, C is the link
bandwidth, B is the base round trip time and ∆q(t)

∆t refers to
the queue length gradient. Since we cannot obtain the queue

length, we calculate Θ(t)
C2 in Eq. (2),

Θ(t)

C2
= (

q(t)

C
+B) · (∆q(t)

C ·∆t
+ 1) (2)

and then, using the fact that q(t)
C + B = θ (one-way delay)

and ∆q(t)
C·∆t = θ (gradient of one-way delay), we rearrange the

Eq. (2) as follows,

Ψ(t) =
Θ(t)

C2
= θ · (θ + 1) (3)

Therefore, we monitor the one-way delay and its gradient to
update Ψ(t) in Eq. (3), which defines the congestion degree
of the path in Algorithm 2.

To summarize, BurstLoader enhances load balancing per-
formance by concurrently considering the status of individual
flows and the dynamics of flowlets at host side while having
no modification to hardware and network protocols.

IV. EVALUATION

We conduct an evaluation of BurstLoader, comparing it
with the state-of-the-art load balancing mechanisms to inves-
tigate the enhancement in performance with NS3 large-scale
simulations [23]. Our evaluation aims to demonstrate whether
BurstLoader can achieve better performance compared to
other schemes under varying traffic burst intensities.

Topology: We construct an 8×8 leaf-spine network topol-
ogy in NS3, featuring 20 Gbps links and a server count of
128. This design ensures eight distinct equal-cost paths be-
tween any host pair, interconnected through diverse switches.
Consequently, we implement a 2:1 oversubscription ratio at
the leaf level to meet standard configurations in common data
center networks [21]. To compare BurstLoader with other
schemes under asymmetric network scenario, we selectively
reduce the capacity of 20% of leaf-to-spine links from 20
Gbps to 4 Gbps.

Workloads: We utilize two realistic workloads (web-search
[1] and data-mining [8]) derived from operational data cen-
ters to simulate traffic dynamics for our evaluations. These
workloads, as demonstrated in prior studies [11], [19], [21],
[24], exhibit heavy-tailed characteristics, where the majority
of flows are small, yet a minor fraction of large flows accounts
for a significant portion of the total bytes. Notably, the web-
search workload tends to be more bursty, while the data-
mining workload exhibits a smoother yet more skewed distri-
bution, with approximately 95% of all data bytes belonging
to merely 3.6% of flows exceeding 35MB [21]. Consequently,
load balancing under the data-mining workload poses a
greater challenge for flowlet-based schemes. To replicate these
workloads, we generate flows between randomly selected
senders and receivers within various leaf switches, following
Poisson processes with varying traffic intensities.

Methodology: To demonstrate the performance improve-
ments offered by BurstLoader, we conduct a comparative
analysis with several state-of-the-art schemes that includes
CLOVE-ECN, Hermes, LetFlow and CONGA, while em-
ploying DCTCP [1] as the underlying transport protocol. We

normalize the FCT to BurstLoader in order to better visualize
the results. To ensure fairness across various schemes, we
maintain a uniform flowlet timeout value.

Under the web-search workload: As shown in Fig. 6,
BurstLoader attains comparable performance to CONGA,
maintaining a performance gap ranging from -15% to 2%,
without relying on customized switches. All other schemes
demonstrate similar performance except CLOVE-ECN, par-
ticularly under heavy workload conditions. Given the bursty
nature of web-search workload and the generation of numer-
ous new flowlets, schemes employing flowlet switching in
network switches can swiftly converge to a balanced load
distribution once sufficient flowlets are enough. CLOVE-ECN
utilizes ECNs to detect path congestion and is implemented at
the end hosts. This approach provides inferior visibility com-
pared to schemes implemented within the switch. Moreover,
BurstLoader possesses the capability to proactively reroute
flows and employs more precise congestion information for
rerouting, surpassing CLOVE-ECN by up to 48%. Her-
mes enhances performance by employing a congestion-aware
strategy for per-packet switching. LetFlow, a congestion-
oblivious approach employing in-network random-hashing
flowlet switching, resembles CONGA and cannot consistently
respond proactively to congestion. BurstLoader, by seiz-
ing favorable flowlet rerouting opportunities and proactively
reroute flows experiencing congestion or failures, outperforms
LetFlow and Hermes by 21-24% and 12-26% at 20-40%
load, respectively. The above experimental results illustrate
that BurstLoader is capable of proactively rerouting flows in
response to real-time flow status assessments, while simul-
taneously capitalizing on flowlet switching to optimize load
balancing.

Under heavy loads approaching 80%, BurstLoader im-
proves the average and 99th percentile FCTs for small flows
by significant margins of 23-60% and 29-65%, respectively.
Pure flowlet-based approaches encounter challenges such as
packet reordering and congestion mismatch at high loads.
However, BurstLoader mitigates these issues by continuously
monitoring flow status to make informed load-balancing de-
cisions. This approach prevents the unnecessary rerouting
of small flows with high sending rates while selectively
rerouting other congested flows. While Hermes also addresses
congestion mismatch through comprehensive sensing and
cautious per-packet rerouting, as seen in Fig. 6c and Fig. 6d,
BurstLoader outperforms Hermes in terms of average FCTs
for small flows by 2-11%. This is beacuse in addition to
sensing the flow status for rerouting, BurstLoader reroutes
new flowlets for flows in a suitable transmission state, thereby
maximizing the utilization of the bursty characteristics of
traffic.

Under the data-mining workload: As shown in Fig.
7, BurstLoader outperforms all alternative schemes in most
scenarios. Contrary to the web-search workload, the data-
mining workload comprises a higher proportion of large
flows and exhibits significantly less bursts. Under such cir-
cumstances, BurstLoader achieves a performance gain of 6-

2 0 4 0 6 0 8 0

1 . 0

1 . 5

2 . 0

FC
T (

No
rm

. to
 Bu

rst
Lo

ad
er)

L o a d (%)

 C L O V E - E C N C O N G A
 H e r m e s L e t F l o w
 B u r s t L o a d e r

(a) Overall avg FCT

2 0 4 0 6 0 8 00 . 5

1 . 0

1 . 5

2 . 0

2 . 5

FC
T (

No
rm

. to
 Bu

rst
Lo

ad
er)

L o a d (%)

 C L O V E - E C N C O N G A
 H e r m e s L e t F l o w
 B u r s t L o a d e r

(b) Large flow (>10MB) avg

2 0 4 0 6 0 8 00 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

FC
T (

No
rm

. to
 Bu

rst
Lo

ad
er)

L o a d (%)

 C L O V E - E C N C O N G A
 H e r m e s L e t F l o w
 B u r s t L o a d e r

(c) Small flow (<100KB) avg

2 0 4 0 6 0 8 00 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5

FC
T (

No
rm

. to
 Bu

rst
Lo

ad
er)

L o a d (%)

 C L O V E - E C N C O N G A
 H e r m e s L e t F l o w
 B u r s t L o a d e r

(d) Small flow 99th percentile

Fig. 6: FCT for the web-search workload (normalized to BurstLoader).

2 0 4 0 6 0 8 0

1 . 0

1 . 5

2 . 0

FC
T (

No
rm

. to
 Bu

rst
Lo

ad
er)

L o a d (%)

 C L O V E - E C N C O N G A
 H e r m e s L e t F l o w
 B u r s t L o a d e r

(a) Overall avg FCT

2 0 4 0 6 0 8 00 . 5

1 . 0

1 . 5

2 . 0

2 . 5

FC
T (

No
rm

. to
 Bu

rst
Lo

ad
er)

L o a d (%)

 C L O V E - E C N C O N G A
 H e r m e s L e t F l o w
 B u r s t L o a d e r

(b) Large flow (>10MB) avg

2 0 4 0 6 0 8 00 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

FC
T (

No
rm

. to
 Bu

rst
Lo

ad
er)

L o a d (%)

 C L O V E - E C N C O N G A
 H e r m e s L e t F l o w
 B u r s t L o a d e r

(c) Small flow (<100KB) avg

2 0 4 0 6 0 8 00 . 5

1 . 0

1 . 5

2 . 0

FC
T (

No
rm

. to
 Bu

rst
Lo

ad
er)

L o a d (%)

 C L O V E - E C N C O N G A
 H e r m e s L e t F l o w
 B u r s t L o a d e r

(d) Overall 99th percentile

Fig. 7: FCT for the data-mining workload (normalized to BurstLoader).

33% compared to CONGA and LetFlow. Previous flowlet-
based schemes, such as CLOVE-ECN, LetFlow, and CONGA,
encounter challenges in promptly reacting to congestion due
to the scarcity of new flowlets under low-burst workloads.
Conversely, BurstLoader estimates flow status to proactively
reroute flows upon detecting congestion or failures. Besides,
BurstLoader outperforms Hermes by 3-5% at 60-80% load
by rerouting new flowlets properly to enhance performance.
For both average FCTs of small flows and overall 99th
percentile FCTs, BurstLoader maintains consistent and robust
performance, as shown in Fig. 7c and Fig. 7d. This is
primarily attributed to BurstLoader’s ability to proactively
reroute large flows experiencing congestion or failures while
avoiding performance loss caused by over-rerouting small
flows.

According to the above experiments and analysis, Burst-
Loader is more adaptive to varying traffic burst intensi-
ties under different workloads compared with the schemes
with customized switches. Furthermore, compared with the
schemes residing in the end hosts, BurstLoader can seize
more opportunities to schedule traffic and thus improve load
balancing performance.

V. RELATED WORK

We briefly discuss related work that has informed and
inspired our design.

The centralized mechanisms (e.g., Hedera [7], MicroTE
[31] and FastPass [32]) employ centralized schedulers to
monitor global network state and schedule large flows in
multiple paths. But they have long scheduling intervals and

cannot adapt to varying traffic burst intensities in data center
networks.

Some in-network solutions employ custom switches to
balance traffic. RPS [14] and DRILL [16] are prone to
experience packet reordering and congestion mismatch under
asymmetric topology [17], [19]. Besides, the performance
optimization effect of flowlet-based schemes (e.g., LetFlow
[11], CONGA [21] and HULA [24]) may be affected under
smooth traffic. Several schemes (e.g., AG [17], APS [33],
TLB [34], BurstBalancer [13], DRW [35] and Halflife [5])
adjust the switching granularity to adapt to the dynamic traffic
and network asymmetries. However, it is difficult or expensive
for them to monitor the transport layer information of each
flow in the switch, which may cause performance issues
under failed switches, such as silent random packet drops and
packet blackholes [19], [36]. Some solutions are optimized for
lossless data centers and do not fall within the scope of our
comparison [37], [38].

Many schemes perform load balancing at end hosts. Presto
[15] routes flowcells to balance load at the network edge.
CLOVE-ECN [22] leverages per-flowlet weighted round robin
at end hosts to route flowlets, and the path weights are
calculated according to ECN signals residing in ACKs.
MPTCP [39], as a transport protocol, routes several sub-flows
simultaneously over multiple paths. Hermes [19] exploits
ECN signals and coarse-grained RTT measurements to sense
congestion on multiple paths for load balancing. PLB [18])
reroutes flows that experience congestion, and it reroutes a
connection by changing the IPv6 Flow Label on its packets,
which switches include as part of ECMP/WCMP. Though

schemes rerouting flows at packet granularity based on flow
status can make proactive load balancing decisions, they lose
the rerouting opportunity based on traffic bursts and hardly
deploy accurate path congestion detection as described in
BurstLoader.

VI. CONCLUSION

BurstLoader adapts to varying traffic burst intensities by
taking into account both flow status and flowlets at end
hosts. It is worth noting that we use several fixed thresholds
to divide the flow status. We will study adaptive dynamic
thresholds to optimize deployment and performance in fu-
ture work. Besides, BurstLoader deploys a more accurate
congestion detection compared to other host-based schemes.
BurstLoader has no modification to existing hardware and
network protocols and provides competitive performance even
against schemes that require custom switches under realistic
workloads.

VII. ACKNOWLEDGMENTS

This work was supported by the National Key Research
and Development Program of China (2021YFC3300603,
2023YFC3306204); the National Natural Science Founda-
tion of China (62376092); the MOE (Ministry of Educa-
tion in China) Project of Humanities and Social Sciences
(23YJCZH183); the Natural Science Foundation of Hunan
Province of China (2022JJ40129, 2023JJ40236); the Open
Project of Xiangjiang Laboratory (23XJ01012, 22XJ03014).

REFERENCES

[1] M. Alizadeh et al., “Data center tcp (dctcp),” in Proceeding of the ACM
SIGCOMM, 2010, pp. 63–74.

[2] W. Li et al., “Flow scheduling with imprecise knowledge,” in Proceed-
ing of the USENIX NSDI, 2024, pp. 95–111.

[3] J. Shao et al., “Racecc: A rapidly converging explicit congestion
control for datacenter networks,” Journal of Network and Computer
Applications, vol. 217, p. 103673, 2023.

[4] Z. Li, M. Li, J. Liu, and S. Tang, “Understanding the flooding in low-
duty-cycle wireless sensor networks,” in Proceeding of the ACM ICPP,
2011, pp. 673–682.

[5] S. Liu et al., “Halflife: An adaptive flowlet-based load balancer with
fading timeout in data center networks,” in Proceeding of the ACM
EuroSys, 2024, p. 66–81.

[6] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proceeding of the ACM SIGCOMM,
2008, pp. 63–74.

[7] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vah-
dat, “Hedera: Dynamic flow scheduling for data center networks,” in
Proceeding of the USENIX NSDI, 2010, pp. 89–92.

[8] A. Greenberg et al., “VL2: a scalable and flexible data center network,”
in Proceeding of the ACM SIGCOMM, 2009, pp. 51–62.

[9] C. Hopps, “Analysis of an equal-cost multi-path algorithm,” RFC 2992,
2000.

[10] S. Sinha, S. Kandula, and D. Katabi, “Harnessing TCP’s burstiness with
flowlet switching,” in Proceeding of the ACM HotNets, 2004.

[11] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall, “Let it
flow: Resilient asymmetric load balancing with flowlet switching,” in
Proceeding of the USENIX NSDI, 2017, pp. 407–420.

[12] D. Shan, F. Ren, P. Cheng, R. Shu, and C. Guo, “Observing and
mitigating micro-burst traffic in data center networks,” IEEE/ACM
Transactions on Networking (ToN), vol. 28, no. 1, pp. 98–111, 2020.

[13] Z. Liu et al., “BurstBalancer: Do less, better balance for large-scale
data center traffic,” in Proceeding of the IEEE ICNP, 2022, pp. 1–13.

[14] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the impact
of packet spraying in data center networks,” in Proceeding of the IEEE
INFOCOM, 2013, pp. 2130–2138.

[15] K. He et al., “Presto: Edge-based load balancing for fast datacenter
networks,” in Proceeding of the ACM SIGCOMM, 2015, pp. 465–478.

[16] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,
“DRILL: Micro load balancing for low-latency data center networks,”
in Proceeding of the ACM SIGCOMM, 2017, pp. 225–238.

[17] J. Liu, J. Huang, W. Li, and J. Wang, “AG: Adaptive switching
granularity for load balancing with asymmetric topology in data center
network,” in Proceeding of the IEEE ICNP, 2019, pp. 1–11.

[18] M. A. Qureshi et al., “Plb: congestion signals are simple and effective
for network load balancing,” in Proceeding of the ACM SIGCOMM,
2022, p. 207–218.

[19] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, “Resilient
datacenter load balancing in the wild,” in Proceeding of the ACM
SIGCOMM, 2017, pp. 253–266.

[20] M. Guo et al., “Towards distributed flow scheduling in ieee 802.1qbv
time-sensitive networks,” ACM Transactions on Sensor Networks
(TOSN), vol. 20, no. 5, 2024.

[21] M. Alizadeh et al., “CONGA: Distributed congestion-aware load bal-
ancing for datacenters,” in Proceeding of the ACM SIGCOMM, 2014,
pp. 503–514.

[22] N. Katta et al., “Clove: Congestion-aware load balancing at the virtual
edge,” in Proceeding of the ACM CoNEXT, 2017, pp. 323–335.

[23] “NS3,” Accessed April 29, 2024. [Online]. Available:
https://www.nsnam.org/.

[24] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “HULA:
Scalable load balancing using programmable data planes,” in Proceed-
ing of the ACM SOSR, 2016, p. 10.

[25] X. Diao, H. Gu, X. Yu, L. Qin, and C. Luo, “Flex: A flowlet-level load
balancing based on load-adaptive timeout in dcn,” Future Generation
Computer Systems (FGCS), vol. 130, pp. 219–230, 2022.

[26] Q. Shi, F. Wang, D. Feng, and W. Xie, “ALB: Adaptive load balancing
based on accurate congestion feedback for asymmetric topologies,” in
Proceeding of the IEEE IWQoS, 2018, pp. 1–6.

[27] S. Hu et al., “Explicit path control in commodity data centers: design
and applications,” in Proceeding of the USENIX NSDI, 2015, p. 15–28.

[28] W. Bai et al., “Information-agnostic flow scheduling for commodity
data centers,” in Proceeding of the USENIX NSDI, 2015, pp. 455–468.

[29] R. Mittal et al., “TIMELY: RTT-based congestion control for the
datacenter,” in Proceeding of the ACM SIGCOMM, 2015, pp. 537–550.

[30] V. Addanki, O. Michel, and S. Schmid, “PowerTCP: Pushing the
performance limits of datacenter networks,” in Proceeding of the
USENIX NSDI, 2022, pp. 51–70.

[31] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine
grained traffic engineering for data centers,” in Proceeding of the ACM
CoNEXT, 2011, p. 8.

[32] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal, “Fast-
Pass: A centralized ”zero-queue” datacenter network,” in Proceeding of
the ACM SIGCOMM, 2014, pp. 307–318.

[33] J. Liu, J. Huang, W. Lv, and J. Wang, “APS: Adaptive packet spraying
to isolate mix-flows in data center network,” IEEE Transactions on
Cloud Computing (TCC), vol. 10, no. 2, pp. 1038–1051, 2022.

[34] J. Hu et al., “Adjusting switching granularity of load balancing for het-
erogeneous datacenter traffic,” IEEE/ACM Transactions on Networking
(ToN), vol. 29, no. 5, pp. 2367–2384, 2021.

[35] F. Fan, H. Meng, B. Hu, K. L. Yeung, and Z. Zhao, “Roulette wheel
balancing algorithm with dynamic flowlet switching for multipath
datacenter networks,” IEEE/ACM Transactions on Networking (ToN),
vol. 29, no. 2, pp. 834–847, 2021.

[36] C. Guo et al., “Pingmesh: A large-scale system for data center net-
work latency measurement and analysis,” in Proceeding of the ACM
SIGCOMM, 2015, pp. 139–152.

[37] J. Hu, Y. He, W. Luo, J. Huang, and J. Wang, “Enhancing load balancing
with in-network recirculation to prevent packet reordering in lossless
data centers,” IEEE/ACM Transactions on Networking (ToN), vol. 32,
no. 5, pp. 4114–4127, 2024.

[38] J. Hu et al., “Load balancing with multi-level signals for lossless
datacenter networks,” IEEE/ACM Transactions on Networking (ToN),
vol. 32, no. 3, pp. 2736–2748, 2024.

[39] C. Raiciu et al., “Improving datacenter performance and robustness
with multipath TCP,” in Proceeding of the ACM SIGCOMM, 2011, pp.
266–277.

