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hensively extract clustering-friendly feature from multi-view data. Multi-view data both
information or specific information. The key of multi-view feature learning is to compre- 
tency but also differences between different views, that each view contains the common 
from researchers, with a focus on multi-view feature learning. There is not only consis- 
ferent sources or modalities, multi-view clustering has been attracted significant attention 
always been a research hotspot. With the rise of multi-view data, originating from dif- 
As one of the main research contents of machine learning, clustering technique has 

1 Introduction
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through experiment analysis of different modules.
better clustering performance, and the effectiveness and robustness were verified
datasets UCI Digits, BDGP, and CCV showed that our proposed algorithm had
feature is input for clustering. The experiment result on three different multi-view 
specific feature from different views. Finally, the learned imbalanced multi-view
multi-view data, and orthogonal constraints are used to maximize the extraction of
GAN network is introduced to maximize the extraction of common feature from
deep networks are used to extract common and specific feature on each view, the
tering algorithm based on common specific feature learning, ImMC-CSFL. Two
imbalanced multi-view data. This paper proposes an imbalanced multi-view clus-
data. Therefore, it is important to fully extract feature from different views of 
across different views, which better reflects the complementarity of multi-view
tionally, imbalanced multi-view data exhibits significant differences in feature
resulting in poor performance of existing multi-view clustering algorithms. Addi-
ever, in practical applications, multi-view data’ initial feature is often imbalanced, 
multi-view feature fusion by maximizing the consistency between views. How-
proposed to solve various practical problems. These algorithms mainly achieve
hotspot at present. Many excellent multi-view clustering algorithms have been 
the generation of multi-view data, multi-view clustering has become the research
Abstract. Clustering as one of the main research methods in data mining, with
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have similarities and disparities among different views. There are numerous excellent
multi-view clustering algorithms, mainly including: multi-view spectral clustering algo-
rithm, multi-view subspace clustering algorithm, multi-view clustering methods based
on non-negative matrix decomposition, and multi-kernel based multi-view clustering
algorithms.

1.1 Motivation

While multi-view clustering algorithms have received considerable attention and dis-
played good performance, they are exclusively suitable for multi-view data with rela-
tively balanced initial features and perform inadequately for multi-view data with varied
quality and imbalanced initial features. The imbalanced multi-view clustering is an
urgent problem, which necessitate addressing. The main reason are as follows:

1) For multi-view data with imbalanced initial features, current methods fail to consider
the specific information of the different view. It is worth noting that the specific
information of the imbalanced multi-view data is particularly rich, which is more
beneficial for extracting complementary features;

2) The extraction of the common and specific information of imbalancedmulti-viewdata
presents a significant challenge for feature fusion. Feature fusion strategies and clus-
teringmethods for the initial feature-imbalancedmulti-view dataset are still relatively
rare.

1.2 Contribution

Toaddress the aforementionedproblem,wepropose an imbalancedmulti-viewclustering
algorithmbasedoncommonand specific feature learning ImMC-CSFL, a novel approach
that effectively integrates the common and specific information of multi-view data in a
unified framework. The main contributions of our proposed approach are as follows:

(1) We design a unified framework to integrate common and specific information of
imbalanced multi-view data, so that our approach can simultaneously utilize the
consistency and complementarity of multi-view data.

(2) ImMC-CSFL incorporates GAN techniques and orthogonal constraints respectively
to fully extract the common feature and specific feature of different views by iter-
atively training the common-specific information learning network and clustering
network.

(3) To verify the effectiveness of ImMC-CSFL, extensive experiments were performed
on three widely used clustering datasets, UCI Digits, BDGP, and CCV. Experimental
results show that our common-specific multi-view feature learning model can more
fully extract the feature of imbalanced multi-view data and achieve better clustering
results compared with existing mainstream methods.

2 Related Work

At present, there are various excellent multi-view clustering algorithms both domesti-
cally and internationally. Based on the different mechanisms used, multi-view clustering
is divided into the following categories.
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Multi-view Spectral Clustering. It integrates multi-view data using graph fusion and
employs spectral clustering for segmentation. Huang et al. introduced MvSCN, empha-
sizing intra-view invariance and inter-view consistency [1],. Zhu et al. proposed OMSC
to address the limitations of two-step methods [2]. Yin et al. introduced a one-step
method based on CSNE [3]. Jia et al. developed MVSC for tensor low-rank representa-
tions, focusing on intra-view and inter-view relationships [4] El Hajjar et al. presented
CNESE, incorporating non-negative embedding [5].

Multi-view Subspace Clustering. It explores consistent subspaces within multi-view
data to cluster similar data types. Gao et al. introduced MVSC in 2015, clustering sub-
space features from each view simultaneously [6]. Brbic et al. proposed low-rank sparse
subspace multi-view clustering by constructing a shared affinity matrix to learn a uni-
fied subspace representation [7]. Zhang et al. addressed subspace recognition issues with
flexible multi-view representation learning [8], further proposing LMSC to extract latent
complementary information from multiple views [9]. Kang et al. introduced LMVSC, a
large-scale multi-view subspace clustering algorithm with linear time complexity [10].

Multi-view Nonnegative Matrix Factorization Clustering. It employs non-negative
matrix factorization to decompose the multi-view feature matrix into an indicator matrix
and a base matrix, forming a multi-view shared indicator matrix[11]. In 2018, Zhang
et al. introduced clustering analysis based on multi-view matrix decomposition, lever-
aging the local structure of samples [12]. Mekthanavanh et al. developed a multi-view
social network video clustering model using non-negative matrix decomposition to cre-
ate a shared consistent matrix from the latent feature matrix [13]. Nie et al. proposed
FMVBKM for fast bilateral K-means multi-view clustering, introducing fast multi-view
matrix triple decomposition [14]. Liu et al. addressed the issue of assigning equalweights
to views in multi-viewNMF algorithms withWM-NMF, which assigns weights to views
to reduce the impact of unimportant views [15].

Multi-view Clustering Based on Multiple Kernels. It achieves clustering in a higher
dimensional feature space by using a kernel function to map the sample features into this
space. Liu et al. proposed a matrix-induced regularized multi-kernel k-means clustering
MKKM[16],which reduces the selection of redundant kernels and enhances the diversity
of kernels. Based on this, Liu et al. proposed amulticore clustering based on the subspace
partitioning of nearest-neighbor kernels [17]and a missing multicore learning algorithm
AMKL [18]. Sun et al. proposed MKLR-RMSC [19], a robust multi-view subspace
clustering method using multi-kernel low-rank representations to extract unique and
complementary view-specific information.

3 Imbalanced Multi-view Clustering Algorithm Based
on Common-Specific Feature Learning (ImMC-CSFL)

The complementarity between different views of multi-view data can be reflected in the
two aspects: 1) Feature consistency between different views, i.e. different views contain
the consistency information; 2) Feature specificity betweendifferent views, i.e. each view
contains its own differential information. To fully extract the consistency information
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and specificity information of multi-view data, and to leverage the complementarity of
multi-view data, we proposed an imbalanced multi-view clustering algorithm based on
common-specific feature learning. As shown in Fig. 1, the framework includes a deep
feature extraction module, a common information learning module based on a GCN,
and a specific information learning module on differential loss.
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Fig. 1. The framework of imbalancedmulti-view clustering algorithm based on common-specific
feature learning.

3.1 Deep Feature Extraction Module

The feature extraction module based on deep convolutional networks contains two
sub-networks: i.e., the common information extraction sub-network and the specific
information extraction sub-network, which are used to extract the common feature
across all views and the specific feature of each view. For a multi-view dataset
X = {X (1),X (2), . . . ,X (M )} X = {X(1),X(2), . . . ,X(M)} X = {X(1),X(2), . . . ,X(M)}
X = {X(1),X(2), . . . ,X(M)} X = {X(1),X(2), . . . ,X(M)}, where M represents the num-
ber of views, X (m) ∈ R

dm×N , dm is the dimensionality of samples in the m-th view,
and N denotes the total number of samples. Each view is inputted into a deep learning
network that connects two separate deep learning networks with various fully connected
layers. The deep feature extraction module can fully extract the useful information of
multi-view data, which is valuable for subsequent feature learning.

Assuming that both the common information extraction sub-network and the specific
information extraction sub-network in each view consist of n+ 1 fully connected layers,
with each k − th layer containing psk units, k ∈ [0, n]. The output of sample x from the
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k-th layer of the common information network in the m-th view can be calculated as
follows:

f mck (x) = hmck = ϕ(Wm
ckh

m−1
ck + bmck) (1)

where Wm
ck ∈ R

pck×pc(k−1) and bmck ∈ R
pck indicate the weight matrix and bias vector of

the k-th layer in the common information extraction sub-network, respectively. ϕ is a
non-linear activation function, commonly include sigmoid and tanh.

Simultaneously, the output of sample x from the k-th layer of the specific information
net-work in the m-th view can be calculated as follows:

f msk (x) = hmsk = ϕ(Wm
skh

m−1
sk + bmsk) (2)

whereWm
sk ∈ R

psk×ps(k−1) and bmsk ∈ R
psk , represent the weight matrix and bias vector of

the k-th layer in the specific information extraction sub-network, respectively.
Therefore, for the i-th sample xmi in the m-th view, we can separately obtain

corresponding common information and specific information, denoted as hmc,i and hms,i.

hmc,i = f mcn(x
m
i )

hms,i = f msn (xmi ) (3)

3.2 Common Information Learning Module

By inputting the multi-view data into common information feature extraction sub-
networks, we can obtain common information of the same sample from different views.
To maximize the common information extraction from different views, Generative
Adversarial Network (GAN) technology is utilized in our framework. Figure 2 shows
the structure of the common information learning module. Differ from traditional GAN,
we consider the deep common feature extraction network on each view as a genera-
tor G, therefore there will be M generators, and input the common feature from the M
generators into a for M-categorical discriminator D. The goal of G in this module is to
generate feature with similar distributions on different views, so that the discriminator
D struggles to determine the feature coming from which view. On the contrary, the goal
of D is to determine which view the incoming feature come from through adversarial
training. The aim of adversarial learning is to ensure that the extracted common infor-
mation from different views is as similar as possible. Essentially, this model strives to
maximize the extraction of the common information from different views. Through the
above analysis, the loss of this module is as follows:

Lc = min
G

max
D

(
∑N

i=1

∑M

m=1
lmi logD(Gm(xmi ))) (4)

where,Gm indicates the generator (common information extraction network) on them-th
view, Gm(xmi ) indicates the feature generated form sample xmi generated by generator
Gm, and lmi indicates the real label for sample xmi . The output of D(Gm(xmi )) is the
probability that the generated sample comes from view m:

Pm
i = D(Gm(xmi )) (5)
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Fig. 2. Common Information Learning Module.

3.3 Specific Information Learning Module

Tomaximize the extraction of specific information, weminimize the correlation between
specific information and common information. In our approach an orthogonal constraint
is applied between the specific and common information within each view. The specific
information learning network is shown in Fig. 3.

For the i-th sample xmi in the m-th view, it is simultaneously input into both the
common information extraction sub-network and the specific information extraction
sub-network. This results in obtaining the common information feature vector for the
sample, denoted as hmc,i, and the specific information feature vector, denoted as hms,i.
Therefore, by incorporating an orthogonal constraint, the loss function is as follows:

Ls =
∑N

i=1
‖(hmc,i)T hms,i‖2 (6)

Views

orthogonal 

constraint

f1

f2

Fig. 3. Specific Information Learning Module.

3.4 Deep Multi-view Clustering Based on Common-Specific Feature Learning

Through the common-specific multi-view feature learning network, the common feature
and specific feature can be obtained from each view. For the i-th sample xmi in the m-th
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view, take hmc,i and hms,i as the extracted common and specific feature on view m. Then,
by combining the common and specific feature vectors extracted from all views, the
common-specific feature hi for sample i is obtained as follows:

hi = [(hc,i)T , (h1s,i)
T , (h2s,i)

T , . . . , (hMs,i)
T ]T (7)

where hc,i represents the common feature of all views, i.e., multi-view common feature,
it can be computed as follows:

hhc,i = 1

M

∑M

m=1
hmc,i (8)

Then input the multi-view common-specific feature into the clustering network.
Through the iterative training of the common-specific feature learning network and the
clustering network, as shown in Fig. 4, to learn a positive clustering structure based on
common-specific feature.

Fig. 4. The Deep Multi-View Clustering based on Common-Specific Feature Learning.

Through the above analysis, the total loss of the imbalanced multi-view clustering
algorithm based on common-specific feature learning is designed as follows:

L = Lc + λ1Ls + λ2Lclu (9)

where λ1 and λ2 are balancing factors used to adjust the weights of each part of the
loss in the overall objective function. Lclu represents the clustering loss and is computed
using the following formula:

Lclu =
∑N

i=1

∑K

j=1
pijlog

pij
qij

(10)

whereK is the number of clusters, qij represents the soft assignment probability of sample
i belonging to cluster j, and pij represents the target probability of sample i belonging to
cluster j.qij and pij are calculated as follows:

qij = (1 + ∥∥hi − μj
∥∥2/α)− α+1

2

∑K
j′=1 (1 + ∥∥hi − μj′

∥∥2/α)− α+1
2 )

(11)
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where, uj indicates the center of cluster j, which can be obtained through clustering
algorithms such as k-means applied to the common-specific feature extracted from the
samples. α is a parameter variable, in our framework its value is set as 1, following
reference [20].

pij = q2ij/fj∑K
j′=1

q2ij/fj′
(12)

where fj is the sum of soft assignment probabilities of all samples belonging to cluster
j, specifically:

fj =
∑N

i=1
qji (13)

4 Experiment

4.1 Experimental Datasets and Evaluation Criteria

In order to validate the effectiveness of our proposed method, the experiments were
taken in three multi-view datasets, UCI Digits [21], BDGP [22], and CCV [23] Dataset.

UCI Digits: The dataset contains 10 classes of handwritten digits, each with 200
different digits, for a total of 2000 data [25] that contains 6 feature sets.

BDGP: The dataset contains 2500 drosophila embryo data categorized into 5 classes.
Each image consists of 1750-D visual vectors and 79-D textual feature vectors, i.e., the
dataset contains 2 modalities.

CCV: The dataset consists of 9317 video segments collected on YouTube and contains
20 different semantic categories.

Evaluation Criteria: In the experiments clustering accuracy (ACC), normalized
mutual information (NMI), and clustering purity (Purity) were selected as evaluation
criteria.

4.2 Methods of Comparison

In order to fully evaluate algorithm performance, some excellent multi-view clustering
methods were collected for comparison. Specifically,

(1) Traditional multi-view clustering methods: BestView [24], ConSC [25], RMSC,
MVSC, CSMSC [26], MCNDCL [27].

(2) Multi-view clustering methods based on deep learning: DCCA [28], DMSC [29],
DAMC [20].
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4.3 Experimental Results

Table 1 shows the results of our method and the compared methods on the UCI Digits.
From the results, we can see that the ImMC-CSFL can achieve the best performance on
most of the criteria. Different from the BestView and ConSC method which is a single
view-based clustering, the ImMC-CSFL effectively utilizes the advantages of multi-
view data. The performance of ImMC-CSFL is also significantly improved compared
to traditional multi-view methods. The ImMC-CSFL can learn more discriminative and
clustering-friendly feature through deep learning techniques.

Table 1. The clustering performance of ImMC-CSFL and compared methods on UCI

Methods ACC NMI Purity

BestView 68.2 66.3 69.9

ConSC 82.8 80.2 83.1

RMSC 86.3 78.0 90.4

MVSC 81.8 85.9 80.2

CSMSC 79.8 76.4 81.2

MCNDCL 90.3 84.6 90.7

DCCA 81.4 78.1 81.4

DMSC 91.6 85.5 91.6

DAMC 96.5 93.2 96.5

ImMC-CSFL 97.8 95.6 98.2

Table 2. The clustering performance of ImMC-CSFL and compared methods on BDGP

Methods ACC NMI Purity

BestView 94.0 89.4 94.2

ConSC 58.4 38.4 58.4

RMSC 60.2 56.3 60.2

MVSC 68.2 56.9 68.4

CSMSC 94.9 84.9 94.8

MCNDCL 88.5 85.7 86.5

DCCA 57.8 40.9 57.8

DMSC 68.1 50.6 73.8

DAMC 98.2 94.6 98.2

ImMC-CSFL 98.5 95.8 97.6

Table 2 shows the evaluation results of all competing methods on the BDGP dataset.
It shows that most of the multi-view methods underperform than BestView, our method



230 X. Li et al.

ImMC-CSFL is higher than the second best. In addition, the performance of the ImMC-
CSFL method is significantly higher than BestView, which indicates that ImMC-CSFL
is able to fully integrate the imbalanced multi-view data to improve the clustering
performance.

Table 3 shows the experimental results of ImMC-CSFL and other comparedmethods
on the CCV dataset. From the results, it is obvious that all the methods give unsatis-
factory results on this dataset. That is because the quality of the samples on each view
on this dataset is not high (as can be reflected from the results of BestView). This leads
to unsatisfactory performance even after fusing multiple views, and improvement for
this aspect will be a direction for subsequent research. Although all the methods under-
perform on this dataset, the ImMC-CSFL can also alleviate this phenomenon to some
extent.

Table 3. The clustering performance of ImMC-CSFL and compared methods on CCV dataset

Methods ACC NMI Purity

BestView 19.5 17.6 22.0

ConSC 10.6 8.6 10.8

RMSC 21.6 18.0 24.1

MVSC 19.3 15.2 21.0

CSMSC 23.9 18.7 27.8

MCNDCL 24.2 19.3 25.6

DCCA 20.7 15.9 21.9

DMSC 17.5 13.5 25.1

DAMC 25.6 22.5 28.6

ImMC-CSFL 28.7 25.4 28.5

5 Summary

In this paper, we propose an imbalanced multi-view clustering algorithm based on
common-specific feature learning, called ImMC-CSFL. ImMC-CSFL first extracts the
common information feature vector and the specific information feature vector on each
view through two deep feature extraction networks, respectively. Then, through GAN
technology, maximize common feature extracted from different views. Orthogonal con-
straints are introduced to minimize the correlation between common feature and specific
feature. Finally, input the learned common specific feature into the clustering network
for iterative training. Extensive experimental results and validation analyses on three
public datasets show that the proposed ImMC-CSFL has better performance than the
existing mainstream methods.
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