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Abstract
In recent years, incomplete multi-view clustering (IMVC) has at-
tracted considerable attention for its ability to acheieve effective
clustering results through the integration of key information amidst
missing view. However, the existing IMVC methods are still faced
with 3 limitations: (1) They exhibit deficiencies in considering the
weight distribution within views, (2) they ignore the varying contri-
butions of different views to the common consistent representation,
and (3) they struggle to sufficiently extract and recover the vital
information within incomplete views. To address these limitations,
we incorporates local reasoning and correlation analysis to design
an incomplete multi-view clustering method(IMVCLRCA), which
introduces a new strategy of feature learning and missing view
recovery, fully exploiting local similarity and structural continuity
within views and performing precise local reasoning recovery on
missing data. By maximizing mutual information between views
through contrastive learning, we achieve the consistent representa-
tion learning of multiple views. Furthermore, based on semantic
consistency, we comprehensively consider the correlation between
views, utilized a weight matrix to fuse cross-view data, and con-
structed a view with a correlation structure, ultimately obtaining a
common consistent representation. We conduct extensive exper-
iments on 4 public datasets including Caltech101-20, BBCSport,
Scene-15, and LandUse-21. Experimental results demonstrate that
IMVCLRCA has higher accuracy and robustness compared to the
state-of-the-art IMVCmethods. The anonymous code of this project
is available on GitHub at https://github.com/ggg2111/2025WSDM-
IMVCLRCA.
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1 Introduction
Multi-view data [1] describes the data from different sources and dif-
ferent feature spaces. For example, social data may include features
like images and text, while bioinformatics data can cover multiple
modalities such as facial, iris, and fingerprint recognition. Addi-
tionally, image data can be represented through various forms of
description such as SIFT, LBP, and HOG. However, in the process of
data collection, equipment failure and other reasons lead to missing
multi-view data, which brings a series of problems and challenges
to multi-view clustering. So incomplete multi-view clustering[2]
emerges as the times require. IMVC can effectively integrate and
utilize the relevant information between views to make up for the
information vacancy caused by missing data, so as to achieve more
accurate and robust clustering results.

In incomplete multi-view data [3], samples can be divided into
complete samples, partial missing samples and complete missing
samples according to the missing situation. The existing IMVC
research mainly focuses on how to effectively fuse the limited and
incomplete multi-view information, compensate or reconstruct
missing data to improve clustering performance. Researchers have
made various attempts, such as: Xue et al. proposed a clustering-
induced adaptive structure enhancement network for incomplete
multi-view clustering [4]; Yin et al. proposed incomplete multi-
view clustering based on cosine similarity (IMCCS) [5]. Xie et al.
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proposed an incomplete multi-view subspace clustering algorithm
IMDF [6] based on adaptive instance-sample mapping and deep
feature fusion. The above methods have improved the accuracy and
robustness of incomplete multi-view clustering to a certain extent.
However, they still have the following 3 shortcomings: (1) They
exhibit deficiencies in considering the weight distribution
within views; (2) they ignore the varying contributions of
different views to the common consistent representation;
(3) they struggle to sufficiently extract and recover the vital
information within incomplete views.

To address the above problems, in this paper, we proposes an
Incomplete Multi-View Clustering via Local Reasoning and Cor-
relation Analysis (IMVCLRCA), whose structural framework is
illustrated in Figure 1. For Problem 1 and 2, we assign intra-view
weights through a global correlation analysis algorithm, and fully
fuse views to achieve inter-view correlation analysis and obtain a
common consistent representation. For Problem 3, since adjacent
data points often have similar features and there are often obvi-
ous spatial or sequential structures within samples, we propose
a new view recovery strategy to fully exploit the local similarity
and structural continuity to realize local information reasoning
of views. At the same time, we maximize inter-view mutual infor-
mation and information entropy through contrastive learning to
achieve multi-view consistent representation learning.

The main contributions of this paper are summarized as follows:
• We propose a new local information reasoning strategy. The
strategy directly exploits the inherent local similarity and
structural continuity of views, and reconstructs the intra-
view features through a self-supervised loss term.

• To fully consider the contribution of each view to the clus-
tering, we propose a global correlation analysis algorithm,
which performs inter-view correlation analysis while assign-
ing intra-view weights, and fully integrates the information
of each view to obtain a high-quality common consistent
representation.

• We propose an IMVC method via local reasoning and corre-
lation analysis. The method realizes missing data recovery
and feature learning by mining potential features and con-
nections within and between views, and achieves consistent
representation learning through contrastive learning. We
conduct experimental analyses on 4 datasets and the results
demonstrate the superiority of IMVCLRCA.

2 Related Work
In this section, we briefly review two important topics related to
our research, i.e., incomplete multi-view clustering and contrastive
learning.

2.1 Incomplete Multi-view Clustering
The existing IMVC methods can be divided into: 1) IMVC based
on matrix factorization[7 − −10], including non-negative matrix
factorization (NMF) and singular value decomposition (SVD), etc.,
realizes low-rank approximation and feature extraction of data
through matrix factorization technology. 2) IMVC based on kernel
learning[11 − −14], including multi-view kernel alignment, multi-
kernel learning, etc., maps multi-view data into high-dimensional

space by using kernel functions to capture nonlinear features, and
integrates kernel matrices from different views to achieve incom-
plete multi-view clustering. 3) IMVC based on graph learning[15 −
−19], including graph regularization, multi-view graph embedding,
etc., captures the local and global relationships of data by con-
structing graph structures within and between views, and uses
the properties of graph structures to deal with missing data, thus
achieving incomplete multi-view clustering. 4) IMVC based on deep
learning[20 − −24], including variational autoencoder (VAE), gen-
erative adversarial network (GAN), etc., processes complex and
high-dimensional multi-view data through the powerful learning
ability of deep neural networks, so as to improve the clustering
performance.

Among the deep-learning-based IMVC studies, the most repre-
sentative works include Incomplete Multi-View Clustering Based
on Deep Semantic Mapping (IMVC-DSM) [25], Partial Multi-View
Clustering Network Based on Consistent Generative Adversarial
(PMVC-CGAN) [26], and Adversarial Incomplete Multi-View Clus-
tering (AIMVC) [27]. Among them, IMVC-DSM solves the feature
learning problem of multi-view data by exploring the partially
aligned information in the available views, extracts deep features
through DNN, and obtains a more reasonable structured repre-
sentation through the regularization term of local graph, which is
expressed as follows:

min
𝑃𝑐 ,

{
𝑈 (𝑣) ,𝑃 (𝑣)

𝑠

}𝑙
𝑣=1

𝑙∑︁
𝑣=1

[𝐴(𝑣)
𝑐 , 𝐴

(𝑣)
𝑠

]
−𝑈 (𝑣)

[
𝑃𝑐 , 𝑃

(𝑣)
𝑠

]2
𝐹
+ 𝜆𝑣 Tr

(
𝑃 (𝑣)𝐿

𝑍 (𝑣) 𝑃
(𝑣)𝑇

)
s.t.𝑈 (𝑣) ≥ 0, 𝑃 (𝑣) =

[
𝑃𝑐 , 𝑃

(𝑣)
𝑠

]
≥ 0
(1)

where 𝐴(𝑣) =

[
𝐴
(𝑣)
𝑐 , 𝐴

(𝑣)
𝑠

]
= 𝑓

(
𝜗 (𝑣)𝑋 (𝑣) + 𝑏 (𝑣)

)
represents the

sample features generated by the v-th view in the DNN. 𝐿𝑍 (𝑣) is the
pre-constructed nearest neighbor graph Laplacian matrix based on
the available instances of the v-th view. 𝜗 (𝑣) and 𝑏 (𝑣) are network
weights and biases, respectively.

PMVC-CGAN learns a shared low-dimensional representation
and generates missing view data through GAN, and captures better
common structure from part of the multi-view data to improve
clustering performance. AIMVC infers missing data by integrat-
ing element reconstruction and GAN to capture overall structure
and gain deeper semantic understanding, and designs pairwise
clustering loss for better clustering structure.

2.2 Contrastive Learning
Contrastive learning learns the feature representation of data by
constructing sample pairs and optimizing the closeness between
similar samples and the spacing between dissimilar samples, so
as to realize effective discrimination in the feature space, mak-
ing similar samples gather while different samples disperse. In
practice, contrastive learning extracts features through deep neu-
ral networks, optimizing models by loss function like InfoNCE to
strengthen the ability to distinguish between positive and negative
samples in the feature space. In MoCo [28], Kaiming He et al. regard
contrastive learning as a dictionary query task, for example, for
query q obtained from existing encoding and samples {𝑘0, 𝑘1, 𝑘2, ...},
{𝑘0, 𝑘1, 𝑘2, ...} can be regarded as the key in the dictionary. If there
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Table 1: Description of the notation.

Notation Description

𝑋 (𝑣) All samples under the v-th view
𝑋

(𝑣)
𝑖

The v-th sample for the v-th view
𝑍 (𝑣) All samples in the v-th view after LIRM
�̃� (𝑣) All samples in the v-th view after decoding
𝑍 (𝑣) All samples in the v-th view after GCAA
𝐸 (𝑣) (𝑋 (𝑣) ) The encoder for the v-th view
𝐷 (𝑣) (𝑍 (𝑣) ) The decoder for the v-th view
𝐿𝑅 (𝑣) The LIRM for the v-th view
𝐶𝐴(𝑣) Correlation analysis for the v-th view
K Class clusters

is only one key in the dictionary, i.e. k+ (k positive) matches query
q, so q and k+ are considered positive sample pairs of each other,
and the remaining keys are negative samples of q. Therefore, the
loss function is defined as:

𝐿𝑞 = −𝑙𝑜𝑔 𝑒𝑥𝑝 (𝑞 · 𝑘+/𝜏)∑𝑘
𝑖=0 𝑒𝑥𝑝 (𝑞 · 𝑘𝑖/𝜏))

(2)

To minimize the loss, query q is required to be similar to the
unique positive sample k+ and dissimilar to all other negative sam-
ples key. Conversely, if the similarity between q and k+ is small or
the similarity between q and other negative sample keys is large,
the loss value will be relatively large, thus prompting the model to
update parameters.

3 The Proposed Approach
3.1 Notion
Given a multi-view dataset with N samples and V views 𝑋 =

{𝑋 (1) , 𝑋 (2) , ..., 𝑋 (𝑉 ) } , where the multi-view dataset under the v-
th view is denoted as 𝑋 (𝑣) = {𝑥 (𝑣)1 , 𝑥

(𝑣)
2 , 𝑥

(𝑣)
3 , ..., 𝑥

(𝑣)
𝑁

}, 𝑥 (𝑣)
𝑖

repre-
sents the i-th sample feature under the v-th view. The key symbol
definitions involved in this paper are shown in Table 1.

3.2 Local reasoning and feature learning
In real application, the adjacent nodes or pixels of the multi-view
data have similar textures or changes and exist global spatial or
sequential structures, that is, local similarity and structural conti-
nuity. In this regard, we propose a new local information reasoning
and feature learning strategy (LIRM), which processes data under
each view, recovering missing data while fully learning features of
views. Its core consists of six serialized convolution modules that
perform convolution operations on input images by multiple filters,
and each module is connected to a batch normalization layer to
enhance stability and efficiency when processing high-dimensional
data. Taking a two-dimensional image as an example, 𝑦𝑖 𝑗 can be
calculated as:

𝑦𝑖 𝑗 =

𝑀∑︁
𝑚=1

𝑁∑︁
𝑛=1

𝑥 (𝑖+𝑚−1) ( 𝑗+𝑛−1) · 𝑘𝑚𝑛 (3)

where 𝑥𝑖 𝑗 represents the pixel value of the input image at position (i,
j), 𝑘𝑚𝑛 represents the weight of the convolution kernel at position

Table 2: The architecture of LIRM.

Layer Kernels Size Filling Output

Input (B, 1, C, D )
Conv1 C (C, 1) valid (B, C, 1, D )
Permute (B, 1, C, D )
BatchNorm
Conv2 C𝑞 (E𝑓 *0.1, 1) same (𝐵,C𝑞,𝐶, 𝐷)
BatchNorm
Conv3 C𝑞 (E𝑓 *0.1, 1) same (𝐵,C𝑞,𝐶, 𝐷)
BatchNorm
Conv4 C (C, 1) same (B, C, C, D )
BatchNorm
Conv5 1 (C, 1) same (B, 1, C, D )
Conv6 1 (C, 1) same (B, 1, C, D )

(m, n), and 𝑦𝑖 𝑗 represents the value of the output feature map at
position (i, j). If the convolution output of layer l is 𝑌 (𝑙 ) , then the
input to layer l+1 can be calculated as:

𝑌
(𝑙+1)
𝑖 𝑗

= 𝑓

(
𝑀∑︁

𝑚=1

𝑁∑︁
𝑛=1

𝑌
(𝑙 )
(𝑖+𝑚−1) ( 𝑗+𝑛−1) · 𝑘

(𝑙 )
𝑚𝑛

)
(4)

where f represents the RELU activation function. Through the it-
eration of multi-layer convolution module, higher-level features
(such as structure and shape) can be extracted from low-level local
features (such as edges and corners) gradually, which is not only a
hierarchical expression of local similarity, but also a mining method
of spatial structural relationship. Therefore, for any partially miss-
ing sample, the local similarity and structural continuity can be
fully utilized to effectively infer the missing data.

The module architecture is defined in Table 2. It should be noted
that after conv1 processing, the dimension of sample features will
be transformed from (B, 1, C, D) to (B, C, 1, D), which requires two-
dimensional permutation on sample features to adapt to subsequent
operations.

Since different datasets have different data characteristics, such
as different view dimensions and sizes, the expansion factors 𝐸𝑓
and 𝐶𝑞 are set in the module to adjust the size and number of
convolution kernels in different datasets, which makes the module
flexible to adapt to the characteristics of different datasets and
improves its ability to capture intra-view structural features.

Finally, the difference between the decoded views and the orig-
inal views is minimized by the loss function L𝑙𝑟 , which can be
calculated as:

L𝑙𝑟 =

𝑉∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑋 𝑣
𝑖 − 𝐷 (𝑣) (𝑍 𝑣

𝑖 )
2
2

(5)

𝑍 𝑣
𝑖 = 𝐿𝑅 (𝑣)

(
𝐸 (𝑣) (𝑋 𝑣

𝑖 )
)

(6)

From the above analysis, LIRM can improve the generalization
ability of the network, effectively mine and recover useful infor-
mation from incomplete multi-view data, and greatly improve the
data utilization and recovery quality, which is of great significance
for incomplete multi-view clustering in practical applications.
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Figure 1: The framework of the proposed IMVCLRCA. As shown, LRCAIMVC consists of three joint losses, i.e., local information
reasoning, contrastive learning, and global correlation analysis.

3.3 Global correlation analysis
To fully consider the contribution of each view to clustering and ex-
tract the key information in views, the sample features are weighted
before the inter-view correlation analysis to distinguish the back-
ground and key information, and then the views are fused with each
other through the weight matrix to obtain a common consistent
representation.

Specifically, firstly, all sample features 𝑍 (𝑣) in a single view are
input into L linear layers for weights learning, and query Q and
keyword K are obtained through𝑊𝑞 and𝑊𝑘 respectively, where
𝑊𝑞,𝑊𝑘 ∈ 𝑅𝑑×𝑑 ,𝑄,𝐾 ∈ 𝑅𝑙×𝑑 , l is the feature length, d is the feature
depth. Subsequently, the query Q is normalized with the keyword
K so that the norm of each feature vector is 1. The element-wise
multiplication of the query matrix Q and𝑊𝑒 generates the original
weights, which are then multiplied by a scaling factor to obtain the
weights, thereby generating the global query weight vector e:

𝑒 =
𝑄 ·𝑤𝑒√

𝑑
(7)

where, 𝑤e ∈ 𝑅𝑑 is a learnable parameter vector. After the weight
vector e is obtained, the normalization process is also performed
to ensure that the weight distribution is reasonable, and then the
weight e is used to perform weighted summation on the query Q
to generate the global query vector q:

𝑞 =

𝑛∑︁
𝑖=1

𝑒𝑖 ∗𝑄𝑖 (8)

Where, 𝑒𝑖 and 𝑄𝑖 are the parameters corresponding to the weight
vector e and query Q under the i-th sample. After that, multiply the
global query vector q with each vector of the keyword K, then after
passing it through a linear layer𝑊𝑔 , add it and the original query
Q together. Finally, input the outcome into the final linear layer𝑊𝑜

to obtain the weighted sample features:

𝑂𝑢𝑡 =𝑊𝑜 · (𝑊𝑔 · (𝑞 · 𝐾) +𝑄) (9)

Finally, the difference between the fusion prediction results and
the target sample features is minimized by the loss L𝑐𝑎 . L𝑐𝑎 can
be calculated as:

L𝑐𝑎 =
∑︁

1≤𝑣<𝑖≤𝑉

𝑍 (𝑣) − 𝑍 (𝑖 )
2
2

(10)

𝑍 (𝑣) = 𝐶𝐴(𝑣) (𝑍 𝑖 ) (11)
Through the above calculation, we complete the fusion of one

view to another view and obtain 𝑍 (𝑣) . After the fusion of other
views, we concatenate the fusion results with the original features
to obtain the final common consistent representation of the current
view. The same goes for the other views.

By weighted fusion of sample features, the algorithm can ef-
fectively process and fuse the effective information within and
between views, thus improving the performance of IMNV.

3.4 Consistency represents learning
To maximize the consistency between the output features of the
original view and the transformed view, contrastive learning is
used to maximize the mutual information between views. Take two
views as an example, sample features 𝑍 (1) and 𝑍 (2) under each
view are obtained after the first stage of processing, then the mutual
information between 𝑍 (1)

𝑖
and 𝑍 (2)

𝑖
is represented as 𝐼

(
𝑍
(1)
𝑖

;𝑍 (2)
𝑖

)
,

and the information entropy of 𝑍 (1)
𝑖

is represented as 𝐻
(
𝑍
(1)
𝑖

)
. In

order to improve clustering performance, it is necessary to maxi-
mize the mutual information between samples from different views
that is to maximize 𝐼

(
𝑍
(𝑣)
𝑖

;𝑍 (𝑣)
𝑖

)
, while according to information

theory [29], the larger 𝐻
(
𝑍
(𝑣)
𝑖

)
is, the more information the sam-

ple features contain. Therefore, the loss function L𝑐𝑙 of contrastive
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learning can be calculated as:

L𝑐𝑙 = −
𝑁∑︁
𝑖=1

(
𝐼

(
𝑍
(1)
𝑖

;𝑍 (2)
𝑖

)
+ 𝐻

(
𝑍
(1)
𝑖

)
+ 𝐻

(
𝑍
(2)
𝑖

))
(12)

Specifically, the input batch size B and feature dimension D
are firstly obtained, and then the joint probability distribution is
calculated to obtain the joint probability distribution matrix 𝑃 ∈
𝑅𝐷×𝐷 .

𝑃 =
1
𝑁

𝑁∑︁
𝑖=1

𝑍 1
𝑖 (𝑍

2
𝑖 )

⊤ (13)

The symmetry and normalization are carried out by Eq. (14) to
ensure that the joint probability distribution matrix P is symmetri-
cal, and the sum of its elements is 1, so as to obtain the complete
joint probability distribution matrix.

𝑃 =
𝑃 ′∑
𝑖, 𝑗 𝑃

′
𝑖 𝑗

, 𝑃 ′ =
𝑃 + 𝑃𝑇

2
(14)

Subsequently, the edge probability distribution 𝑃𝑖 , 𝑃 𝑗 are calcu-
lated by (15), and the full loss L𝑐𝑎 is obtained in the end.

𝑃𝑖 =
∑︁
𝑗

𝑃𝑖 𝑗 , 𝑃 𝑗 =
∑︁
𝑖

𝑃𝑖 𝑗 (15)

L𝑐𝑙 = −
∑︁
𝑖, 𝑗

𝑃𝑖 𝑗
(
log 𝑃𝑖 𝑗 − 𝜆log𝑃𝑖 − 𝜆log𝑃 𝑗

)
(16)

Through contrastive learning, the network can extract the essen-
tial features of data in the case of partial data missing to improve the
quality of features frommulti-view data, and promote the clustering
effect.

Finally, we design a joint loss function, which comprehensively
considers the local reasoning loss term, the correlation analysis loss
term and the contrastive learning loss term. The joint loss function
is defined as:

L𝐿𝑅𝐶𝐴 = L𝑙𝑟 + 𝜆1L𝑐𝑎 + 𝜆2L𝑐𝑙 (17)

where parameter 𝜆1 and 𝜆2 are designed to balance L𝑙𝑟 and L𝑐𝑎 ,
which are all set to 0.1 in the experiment.

4 Experiments
4.1 Dataset
To comprehensively evaluate the effectiveness and applicability of
the proposed method, four widely used public datasets are selected:
Caltech101-20 [30], BBCSport [31], Scene-15 [32], and LandUse-21
[33], which are described in detail in Table 3. These datasets are
from different application backgrounds, covering diverse image
data from natural scenes to specific objects, and are suitable for
testing the performance of multi-view clustering and information
recovery algorithms when dealing with real complex data.

4.2 Comparison method
To comprehensively evaluate the methods proposed in this paper,
10 methods are selected and compared with our approach according
to multiple dimensions such as release time and core technology.
Meanwhile, according to their technical characteristics and process-
ing strategies, they can be divided into the following categories:

(1) Classical multi-view methods

Table 3: Summarization of datasets.

Dataset Samples Class View Feature

Caltech101-20 2386 20 6 48,40,254,1984,512,928
BBCSport 544 5 2 3183,3203
Scene-15 4485 15 3 20,59,40

LandUse-21 2100 21 3 20,59,40

DCCA [34] (ICML, 2013) enhances the traditional canonical
correlation analysis through deep learning, enabling it to learn
complex nonlinear mappings, thereby improving the correlation
analysis efficiency ofmulti-view features. BMVC [35] (TPAMI, 2019)
significantly reduces computational complexity and memory re-
quirements through collaborative discrete representation learning
and binary clustering structure learning, and utilizes an alternating
optimization algorithm to ensure fast convergence.

(2) Non-reasoning methods
AE2-Nets [36] (CVPR, 2019) enhance the ability of feature ex-

traction and representation learning by nesting an autoencoder
inside an autoencoder; PVC [37] solves the problem of partial view
data missing by constructing a shared latent subspace. EERIMVC
[38] (TPAMI, 2020) solves the complex problem of kernel matrix
interpolation by associating each incomplete basis matrix gener-
ated by the incomplete view with the learned consensus matrix.
PIC [39] uses spectral perturbation theory to complete the filling
of similarity matrix.

(3) Reasoning methods
UEAF [40] introduces error matrix and Laplacian regularization

term to recover missing view; RecFormer [41] (TNNLS, 2023) uses
a two-stage autoencoder network combined with self-attention
structure to synchronously extract high-level semantic represen-
tations of multi-view data. DCP [42] (TPAMI, 2022) realizes in-
formation consistency and data recovery by jointly optimizing its
contrastive learning loss and dual prediction loss. FCMVC-IV [43]
(TIP, 2024) maintains a extensible consensus coefficient matrix, up-
dates its knowledge with incomplete views passed in and designs a
three-step iterative algorithm with linear complexity and provable
convergence to fuse multi-view data.

4.3 Experimental results and analysis
In clustering evaluation, we selected accuracy (ACC), purity, nor-
malized mutual information (NMI), V-measure (VM), adjusted Rand
index (ARI) and Fowlkes-Mallows index (FMI) as evaluation indi-
cators. Based on the experimental basis of [42], the IMVCLRCA
proposed in this paper was tested and analyzed on various datasets
with a missing rate of 50%. For all selected methods, we used the rec-
ommended network structure and parameters for fair comparison.
The final experimental results are recorded in Tables 3-6, where
the optimal values of each indicator are indicated in bold and the
suboptimal ones are indicated by underscores. The experimental
results show that:

(1) The classical IMVC method is inferior to IMVCLRCA in all
indicators. Firstly, both DCCA and BMVC can utilize the comple-
mentary information of multiple views to a certain extent, but both
perform poorly in handling missing data, so their performance will
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Table 4: Experimental results on Caltech101-20.

Method ACC Purity NMI VM ARI FMI

DCCA 38.60 ± 1.16 44.14 ± 3.54 52.54 ± 4.81 53.65 ± 4.99 29.79 ± 1.84 31.63 ± 2.81
BMVC 32.15 ± 2.92 49.07 ± 4.00 40.60 ± 4.33 41.23 ± 6.06 12.22 ± 0.89 22.95 ± 1.33

AE2-Nets 33.63 ± 3.03 48.22 ± 2.59 49.20 ± 4.24 54.71 ± 5.95 24.98 ± 1.85 31.49 ± 1.72
PVC 41.41 ± 2.95 39.90 ± 5.32 56.54 ± 2.04 60.42 ± 1.12 31.11 ± 0.81 34.28 ± 3.22

EERIMVC 40.66 ± 1.35 51.82 ± 1.63 51.38 ± 3.85 55.60 ± 4.01 27.91 ± 1.17 28.10 ± 3.39
UEAF 47.36 ± 2.50 46.26 ± 3.83 59.71 ± 4.03 57.93 ± 4.62 37.09 ± 2.19 31.84 ± 2.27
PIC 57.53 ± 4.06 60.21 ± 5.14 64.33 ± 5.31 65.80 ± 3.63 45.12 ± 1.88 49.98 ± 5.39

RecFormer 66.74 ± 6.95 69.17 ± 5.07 64.45 ± 5.48 63.65 ± 1.13 70.13 ± 2.59 67.42 ± 3.02
DCP 68.44 ± 1.14 71.08 ± 1.12 67.39 ± 2.02 69.03 ± 7.09 75.44 ± 2.46 73.57 ± 2.70

FCMVC-IV 71.76 ± 3.39 75.48 ± 1.44 68.30 ± 8.11 67.77 ± 3.66 75.58 ± 1.02 72.06 ± 0.68
IMVCLRCA 75.89 ± 2.03 80.21 ± 2.41 70.42 ± 1.98 71.39 ± 1.79 79.15 ± 0.64 75.11 ± 1.02

Table 5: Experimental results on BBCSport.

Method ACC Purity NMI VM ARI FMI

DCCA 27.43 ± 0.59 12.69 ± 1.00 21.78 ± 2.13 26.50 ± 2.13 23.38 ± 0.37 16.84 ± 0.40
BMVC 24.29 ± 0.84 22.06 ± 0.73 27.46 ± 1.95 24.62 ± 1.53 13.55 ± 1.97 12.01 ± 0.66

AE2-Nets 29.38 ± 1.12 27.74 ± 2.39 29.35 ± 0.24 30.19 ± 2.52 18.56 ± 2.41 12.89 ± 2.31
PVC 51.52 ± 1.42 45.26 ± 0.59 35.32 ± 2.29 40.48 ± 0.97 30.05 ± 1.53 26.12 ± 0.61

EERIMVC 35.43 ± 1.76 37.28 ± 3.00 34.19 ± 4.34 28.80 ± 0.31 23.90 ± 3.29 19.85 ± 5.07
UEAF 38.67 ± 0.41 30.04 ± 1.16 29.75 ± 0.94 26.45 ± 2.75 20.18 ± 1.18 16.48 ± 1.86
PIC 45.16 ± 0.31 35.20 ± 2.45 37.41 ± 4.29 33.07 ± 3.86 21.97 ± 2.25 20.62 ± 1.68

RecFormer 51.07 ± 1.37 44.28 ± 3.31 33.31 ± 5.53 36.73 ± 0.15 25.87 ± 0.37 22.99 ± 5.50
DCP 60.37 ± 0.49 51.83 ± 1.69 41.20 ± 1.08 39.26 ± 1.21 23.51 ± 2.04 20.44 ± 1.79

FCMVC-IV 58.42 ± 0.02 43.20 ± 1.07 37.56 ± 0.16 41.13 ± 2.30 35.87 ± 1.65 27.29 ± 0.06
IMVCLRCA 62.81 ± 0.64 58.20 ± 0.36 40.25 ± 0.52 44.89 ± 2.10 35.74 ± 2.53 35.88 ± 0.22

Table 6: Experimental results on Scene-15.

Method ACC Purity NMI VM ARI FMI

DCCA 31.83 ± 0.35 32.19 ± 0.60 33.18 ± 2.18 33.65 ± 1.02 14.95 ± 0.02 16.01 ± 1.76
BMVC 30.92 ± 1.50 31.90 ± 1.74 30.25 ± 0.87 29.32 ± 0.54 10.95 ± 1.84 12.47 ± 0.14

AE2-Nets 27.90 ± 0.33 29.14 ± 1.36 31.36 ± 0.06 33.19 ± 0.39 13.96 ± 0.08 14.89 ± 0.09
PVC 25.62 ± 1.31 24.62 ± 0.01 25.30 ± 1.61 28.46 ± 2.78 11.25 ± 0.08 13.21 ± 2.33

EERIMVC 33.11 ± 6.22 33.98 ± 4.13 32.12 ± 2.20 35.10 ± 4.41 15.90 ± 0.49 17.15 ± 2.41
UEAF 28.22 ± 0.34 28.01 ± 2.26 27.01 ± 0.01 25.56 ± 1.84 8.69 ± 0.96 11.48 ± 0.14
PIC 38.71 ± 3.73 36.74 ± 2.78 37.98 ± 0.25 41.77 ± 2.97 21.17 ± 3.21 23.62 ± 3.00

RecFormer 31.51 ± 5.37 33.28 ± 4.59 33.31 ± 4.11 30.83 ± 0.95 19.82 ± 1.24 22.41 ± 2.20
DCP 39.50 ± 0.71 42.73 ± 2.79 42.35 ± 1.77 41.79 ± 2.17 23.51 ± 1.64 25.87 ± 0.65

FCMVC-IV 39.64 ± 2.57 43.20 ± 1.56 38.45 ± 2.83 40.53 ± 1.25 22.66 ± 0.09 26.02 ± 1.69
IMVCLRCA 42.70 ± 0.04 44.86 ± 0.78 44.93 ± 1.69 43.89 ± 0.21 25.24 ± 2.75 30.88 ± 0.43

significantly decrease at higher missing rates. On the Caltech101-20
dataset, the ACC, Purity and NMI indexes of them were (38.60%,
44.14%, 52.54%) and (32.15%, 49.07%, 40.60%), respectively. Even
DCCA’s ACC and Purity indicators in the LandUse-21 are only
14.09% and 9.82%. It can be seen that although the classical multi-
view method can make use of multi-view data to a certain extent,
it lacks the processing of missing data and its performance is very
limited in the case of incomplete multi-view. Therefore, IMVCLRCA

makes up for the impact caused by missing views through local
information reasoning, so as to achieve more accurate clustering
results.

(2) Compared with the non-reasoning method, IMVCLRCA also
shows excellent performance. The ACC and Purity indexes on
Caltech101-20 dataset reach 75.89% and 80.21%, while AE2-Nets are
only 33.63% and 48.22%, and for PVC, only 41.41% and 39.90%. By
using a regularization method, EERIMVC strikes a balance between
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Table 7: Experimental results on LandUse-21.

Method ACC Purity NMI VM ARI FMI

DCCA 14.09 ± 2.46 9.82 ± 1.54 20.06 ± 0.92 19.84 ± 0.58 3.40 ± 0.56 4.21 ± 0.76
BMVC 18.78 ± 0.16 14.11 ± 1.71 18.73 ± 2.58 17.90 ± 0.05 3.79 ± 0.63 4.39 ± 0.78

AE2-Nets 19.22 ± 0.53 16.02 ± 1.92 23.04 ± 0.87 22.13 ± 2.22 5.76 ± 0.95 6.48 ± 0.36
PVC 21.34 ± 1.24 17.45 ± 2.95 23.16 ± 1.33 24.57 ± 2.36 8.09 ± 1.37 7.75 ± 0.62

EERIMVC 22.15 ± 2.14 18.96 ± 3.37 25.20 ± 0.60 23.55 ± 1.93 9.09 ± 1.26 9.13 ± 0.09
UEAF 16.39 ± 1.74 14.07 ± 1.66 18.43 ± 0.49 19.29 ± 2.26 3.80 ± 0.56 5.60 ± 0.80
PIC 23.60 ± 1.18 20.98 ± 3.70 26.53 ± 2.96 24.81 ± 2.57 9.45 ± 1.66 8.72 ± 0.23

RecFormer 20.11 ± 3.44 18.06 ± 2.86 23.63 ± 2.50 23.98 ± 3.87 9.85 ± 1.11 10.24 ± 1.32
DCP 22.16 ± 0.53 20.69 ± 1.85 27.00 ± 1.59 26.27 ± 0.59 10.39 ± 1.14 11.03 ± 0.70

FCMVC-IV 20.93 ± 0.70 18.87 ± 1.31 24.12 ± 0.36 24.63 ± 1.24 10.21 ± 1.83 11.79 ± 0.95
IMVCLRCA 22.63 ± 1.22 21.86 ± 0.36 28.71 ± 0.74 27.28 ± 1.96 10.42 ± 0.71 13.75 ± 0.26

recovering missing data and realizing clustering, and achieves sub-
optimal results in ACC and Purity (40.66%, 51.82%). However, on the
LandUse-21 dataset, the ACC index of PIC is 0.97% (23.60%-22.63%)
higher than that of IMVCLRCA. The reason is that PIC cleverly
uses the spectral perturbation theory and performs well in deal-
ing with the missing problem of similarity, but its comprehensive
performance is still inferior to IMVCLRCA. It can be seen that the
non-reasoningmethods and IMVCLRCA have their own advantages
and disadvantages in dealing with incomplete multi-view data, but
the comprehensive performance of IMVCLRCA is still better than
these methods on all datasets.

(3) As one of the reasoning methods, IMVCLRCA deals with
incomplete multi-view data through data recovery and consistency
enhancement, and shows the best performance on all datasets. Its
values of ACC index outperforms the suboptimal method FCMVC-
IV by 4.13%, 4.39%, 3.14% and 1.70%, respectively. It surpasses DCP
by 7.45%, 2.44%, 3.20% and 0.47%, and surpasses UEAF by 28.53%,
24.14%, 14.48% and 6.24%. Although FCMVC-IV, DCP and UEAF can
recover the missing views and enhance the consistency between
views with different effective techniques, IMVCLRCA performs
better when dealing with incomplete multi-view data because it
realizes local reasoning and correlation analysis for missing views.

4.4 Experimental results and analysis under
different missing rates

In the previous subsection, IMVCLRCA achieves excellent perfor-
mance with 50% missing rate. However, the missing degree of real
data is often not fixed. In order to prove that IMVCLRCA can adapt
to datasets with various missing degrees, this subsection evaluates
IMVCLRCA under different missing rates on the Caltech101-20
dataset. Compared with DCP (22’TPAMI), EERIMVC (20’TPAMI)
and BMVC (19’TPAMI), the results show that the robustness and
accuracy of the proposed method are also better than other methods
under different missing rates. The experimental results are shown
in Figure 2.

According to the results, IMVCLRCA achieves the best clustering
performance in all indicators under all missing rates. Especially in
the case of high missing rate (50%-70%), the Purity and V-measure
indicators are significantly higher than other methods, indicating

Table 8: Ablation experiment results (unit: %).

L𝑙𝑟 L𝑐𝑎 L𝑐𝑙 ACC Purity NMI VM ARI FMI

✓ 38.95 30.63 26.69 23.29 14.69 19.11
✓ 38.18 33.02 25.86 22.26 28.32 30.42

✓ 51.69 50.98 60.02 53.79 47.58 46.80
✓ ✓ 53.90 55.40 51.33 48.77 47.11 44.52
✓ ✓ 55.99 59.61 60.62 56.72 47.58 43.38

✓ ✓ 61.23 64.30 65.84 62.81 59.03 57.48
✓ ✓ ✓ 75.89 80.21 70.42 71.39 79.15 75.11

that the proposed method has higher accuracy in handling missing
data.

At the same time, with the increase of the missing rate, although
the clustering accuracy of each method decreases, the decline trend
of IMVCLRCA is obviously gradual than that of other methods. In
particular, it is significantly slower than BMVC under NMI, ARI
and V-measure indicators, and significantly slower than EERIMVC
under Purity indicators. It shows that our method can make full
use of the consistency and difference information between view,
and better adapt to real data with various missing degrees, and has
superior robustness.

4.5 Ablation experiments
In order to verify the role and importance of local information rea-
soning module (L𝑙𝑟 ), global correlation analysis algorithm (L𝑐𝑎)
and contrastive learning loss term (L𝑙𝑟 ) in our method, this subsec-
tion selected the Caltech101-20 dataset with 50% missing rate as the
experimental object for ablation experiment, and the experimental
results are shown in Table 8. From the results:

1) When the local information reasoning module and the global
correlation analysis module are used alone, the overall performance
of the method fails to achieve the expected effect. However, under
the combination of the two, the performance is significantly im-
proved: NMI reaches 65.84%, only 4.58% less than the best result;
The ACC index reaches 61.23%, only 14.66% less than the best re-
sult. The experimental results show that the latter can effectively
utilize the processing results of the former, and complement and
enhance them on the basis of the former. This synergistic effect



WSDM ’25, March 10–14, 2025, Hannover, Germany Xiaocui Li et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Missing Rate

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
C

C

BMVC

EERIMVC

DCP

LRCAIMVC

(a) Comparison of ACC indicators

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Missing Rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
C

C

BMVC

EERIMVC

DCP

LRCAIMVC

(b) Comparison of Purity indicators

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Missing Rate

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
C

C

BMVC

EERIMVC

DCP

LRCAIMVC

(c) Comparison of NMI indicators
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Figure 2: Comparison of indicators under different missing rate on Caltech101-20.

indicates that there is a structural and functional complementarity
between two modules that allows them to significantly exceed their
performance levels when acting jointly.

2) The performance of the inter-view contrastive learning mod-
ule is very superior, and the ACC, NMI and VM indicators reach
51.69%, 60.02% and 53.79%, respectively, which proves the impor-
tance of consistent representation learning for IMVC. And it still has
significant performance improvement when cooperated with other
single modules, which proves that it can effectively use the process-
ing results of view recovery and analysis to achieve a synergistic
effect.

5 Conclusion and future work
This paper proposes an incomplete multi-view clustering method
(IMVCLRCA) based on local information reasoning and global cor-
relation construction, which improves the current IMVC research
from the perspective of view recovery and correlation analysis
inter-view. Different from other IMVC studies, IMVCLRCA fully
considers the extraction and recovery of local features, and pro-
poses a new strategy of feature learning and missing view recovery,
which fully exploits the local similarity and structural continuity
within views, and performs local information reasoning for missing
data. In addition, IMVCLRCA maximizes the mutual information
between views through contrastive learning to achieve consistent

representation learning of multi-view data. At the same time, IMV-
CLRCA also considers the different contributions of each view to
the clustering, fully analyzes the correlation between various views
based on semantic consistency, and fuses multi-view data by the
weight matrix to obtain a common consistent representation to
realize the correlation analysis between views. Finally, the experi-
mental results on 4 datasets demonstrate the effectiveness of this
method. In the future, we will conduct further research on differ-
ent representation learning for multi-view data to achieve higher
quality common consistent representation.
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